MOSFET – N-Channel, SUPERFET[®] II

800 V, 46 A, 85 m Ω

FCH085N80

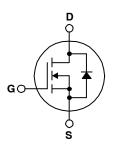
Description

SuperFET II MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

Features

- Typ. $R_{DS(on)} = 67 \text{ m}\Omega$
- 850 V @ $T_J = 150^{\circ}C$
- Ultra Low Gate Charge (Typ. Q_g = 196 nC)
- Low E_{OSS} (Typ. 18 μJ @ 400 V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 568 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

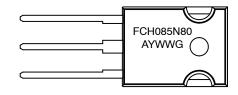
Applications


- AC-DC Power Supply
- LED Lighting

ON Semiconductor®

www.onsemi.com

V _{DS}	R _{DS(ON)} MAX	I _D MAX	
800 V	85 mΩ @ 10 V	46 A	



N-CHANNEL MOSFET

TO-247-3LD CASE 340CH

MARKING DIAGRAM

FCH085N80	= Specific Device Code
А	= Assembly Location
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to Source Voltage		800	V
V _{GSS}	Gate to Source Voltage	– DC	±20	V
		– AC (f > 1 Hz)	±30	
Ι _D	Drain Current:	– Continuous (T _C = 25°C)	46	A
		– Continuous (T _C = 100°C)	29	
I _{DM}	Drain Current:	– Pulsed (Note 1)	138	A
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1701	mJ
I _{AS}	Avalanche Current (Note 2)		9.2	A
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.4	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		20	
PD	Power Dissipation	(T _C = 25°C)	446	W
		Derate Above 25°C	3.5	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to + 150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality shows be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 9.2 \text{ A}, V_{DD} = 50 \text{ V}, R_G = 25 \Omega$, starting $T_J = 25 \text{ °C}$. 3. $I_{SD} \le 46 \text{ A}, \text{ di/dt} \le 200 \text{ A/}\mu\text{s}, V_{DD} \le \text{BV}_{DSS}$, starting $T_J = 25 \text{ °C}$.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
FCH085N80-F155	FCH085N80	TO-247 G03	Tube	N/A	N/A	30 Units

THERMAL CHARACTERISTICS

Symbol	Parameter	FCH085N80-F155	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.28	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	40.0	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
OFF CHARA	ACTERISTICS	-				
BV _{DSS}	Drain to Source Breakdown Voltage	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	800	-	-	V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C	-	0.8	-	V/°C
I _{DSS}	I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	_	-	25	μA
		V_{DS} = 640 V, V_{GS} = 0 V, T_{C} = 125 °C	-	-	250	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 4.6$ mA	2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 23 \text{ A}$	-	67	85	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 23 A	-	55	-	S
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz	-	8140	10825	pF
C _{oss}	Output Capacitance		-	255	340	pF
C _{rss}	Reverse Transfer Capacitance	7	-	10	-	pF
C _{oss}	Output Capacitance	V_{DS} = 480 V, V_{GS} = 0 V, f = 1 MHz	-	1000	-	pF
Coss(eff.)	Effective Output Capacitance	V_{DS} = 0 V to 480 V, V_{GS} = 0 V	-	728	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V_{DS} = 640 V, I_{D} = 46 A, V_{GS} = 10 V	-	196	255	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	40	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	7	-	72	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	0.8	-	Ω
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 46 \text{ A},$	-	45	100	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ (Note 4)	-	55	120	ns
t _{d(off)}	Turn-Off Delay Time		-	160	330	ns
t _f	Turn-Off Fall Time		-	35	80	ns
DRAIN-SOU	RCE DIODE CHARACTERISTICS			-	<u> </u>	
I _S	Maximum Continuous Source to Drain Diode Forward Current			-	46	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	138	Α
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 V, I_{SD} = 46 A$	-	-	1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{SD} = 46 A,$	-	800	-	ns
Q _{rr}	Reverse Recovery Charge	di _F /dt = 100 A/µs	_	32	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

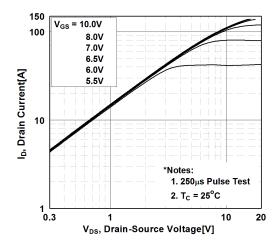


Figure 1. On–Region Characteristics

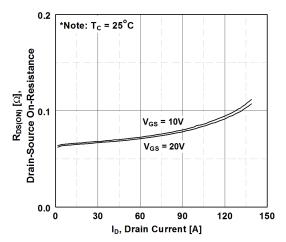
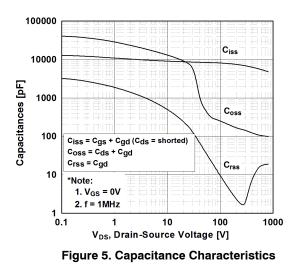
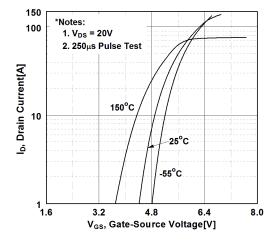




Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

Figure 2. Transfer Characteristics

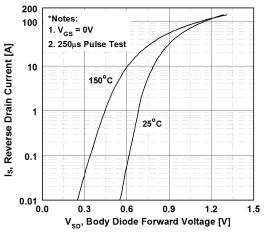


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

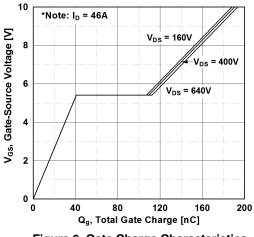


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

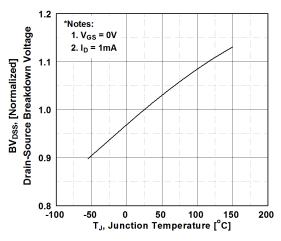


Figure 7. Breakdown Voltage Variation vs. Temperature

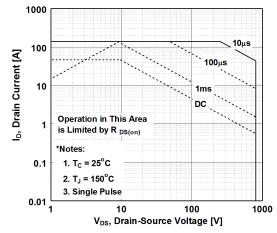


Figure 9. Maximum Safe Operating Area

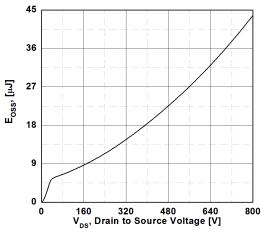
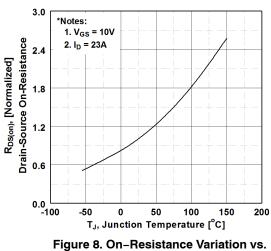
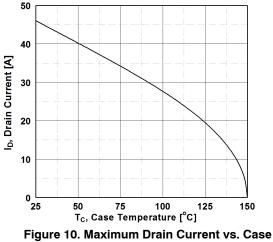




Figure 11. Eoss vs. Drain to Source Voltage

Temperature

igure 10. Maximum Drain Current vs. Case Temperature

TYPICAL CHARACTERISTICS

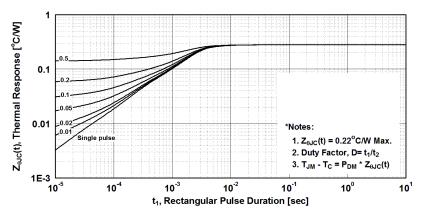
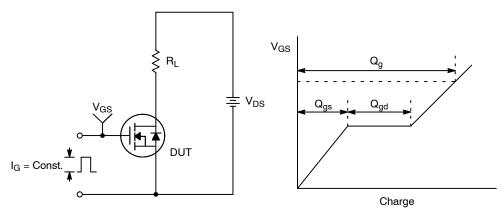



Figure 12. Transient Thermal Response Curve

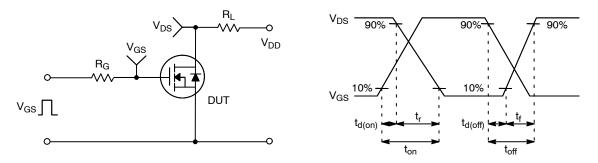


Figure 14. Resistive Switching Test Circuit & Waveforms

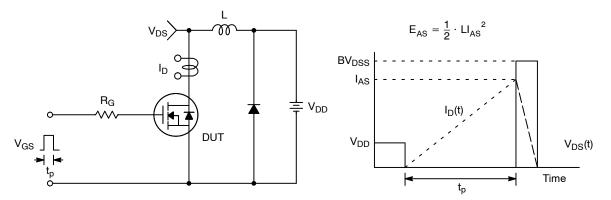


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

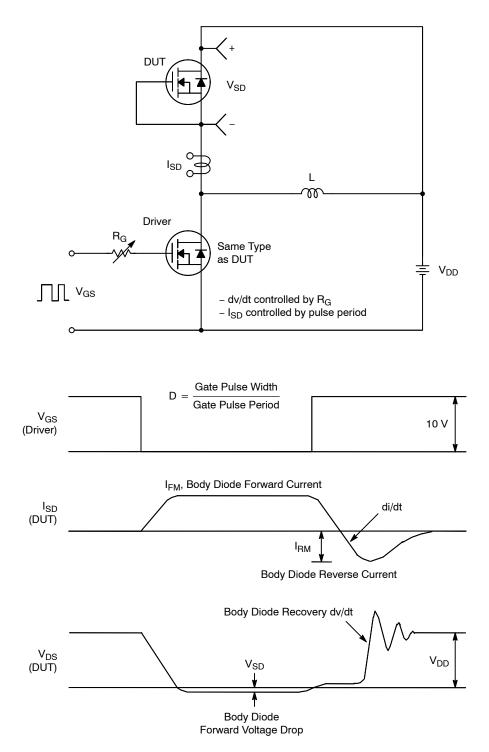
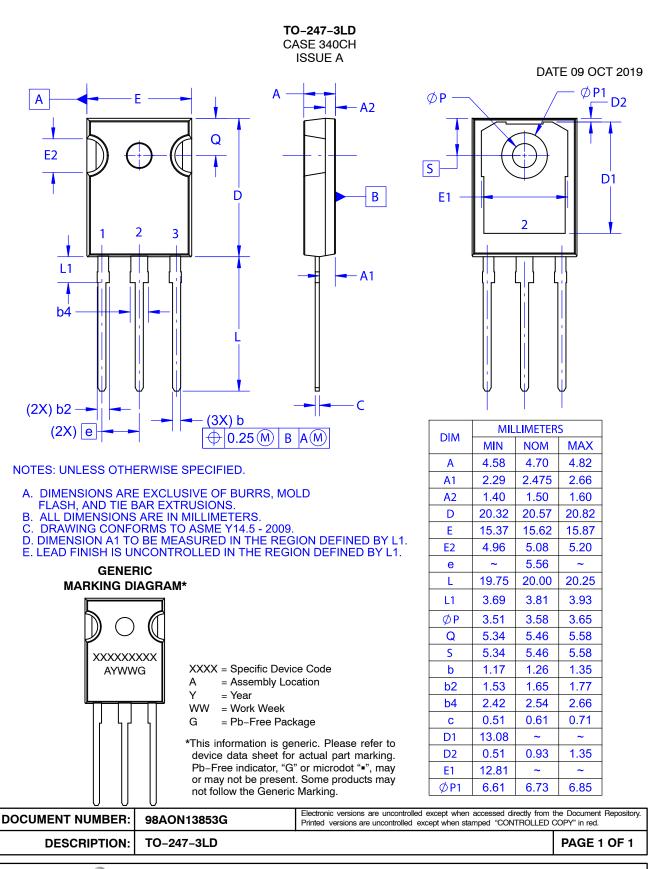



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G