

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]600 V, 15 A, 260 m Ω

Features

- $650 \mathrm{~V} @ \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
- Typ. $\mathrm{R}_{\mathrm{DS}(o n)}=220 \mathrm{~m} \Omega$
- Ultra Low Gate Charge (Typ. $\mathrm{Q}_{\mathrm{g}}=48 \mathrm{nC}$)
- Low Effective Output Capacitance (Typ. Coss(eff.) $=129 \mathrm{pF}$)
- 100% Avalanche Tested
- An Integrated Gate Resistor
- RoHS Compliant

Applications

- LCD / LED / PDP TV Lighting
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET ${ }^{\circledR}$ || MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET easy-drive series offers slightly slower rise and fall times compared to the SuperFET II MOSFET series. Noted by the "E" part number suffix, this family helps manage EMI issues and allows for easier design implementation. For faster switching in applications where switching losses must be at an absolute minimum, please consider the SuperFET II MOSFET series.

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol		Parameter	FCP260N60E	FCPF260N60E	Unit
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage		600		V
$\mathrm{V}_{\text {GSS }}$	Gate to Source Voltage	- DC	± 20		V
		- AC (P 1 1 Hz)	± 30		V
I_{D}	Drain Current	- Continuous ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	15	15*	A
		- Continuous ($\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$)	9.5	$9.5 *$	
I_{DM}	Drain Current	- Pulsed (Note 1)	45	45*	A
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy (Note 2)		292.5		mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current (Note 1)		3.0		A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy (Note 1)MOSFET dv/dt		1.56		mJ
dv/dt			100		V/ns
	Peak Diode Recovery dv/dt (Note 3)		20		
P_{D}	Power Dissipation	$\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	156	36	W
		- Derate Above $25^{\circ} \mathrm{C}$	1.25	0.29	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range		-55 to +150		${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300		${ }^{\circ} \mathrm{C}$

*Drain current limited by maximum junction temperature.
Thermal Characteristics

Symbol	Parameter	FCP260N60E	FCPF260N60E	Unit
$\mathrm{R}_{\text {日JC }}$	Thermal Resistance, Junction to Case, Max.	0.8	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJA }}$	Thermal Resistance, Junction to Ambient, Max.	62.5	62.5	

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCP260N60E	FCP260N60E	TO-220	Tube	N/A	N/A	50 units
FCPF260N60E	FCPF260N60E	TO-220F	Tube	N/A	N/A	50 units

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

Off Characteristics

$B V_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	600	-	-	V
		$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	650	-	-	
$\Delta \mathrm{BV}_{\mathrm{DSS}}$ $/ \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$, Referenced to $25^{\circ} \mathrm{C}$	-	0.67	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
$B V_{\text {DS }}$	Drain to Source Avalanche Breakdown Voltage	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$	-	700	-	V
IDSs	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=480 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	2.6	-	
IGss	Gate to Body Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.5	-	3.5	V
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}$	-	0.22	0.26	Ω
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}$	-	15.5	-	S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	1880	2500	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	1330	1770	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			85	130	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=380 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	32	-	pF
$\mathrm{C}_{\text {oss(eff.) }}$	Effective Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$ to $480 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	129	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (tot) }}$	Total Gate Charge at 10V	(Note 4)	-	48	62	nC
$\mathrm{Q}_{\text {gs }}$	Gate to Source Gate Charge		-	7.4	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	17	-	nC
ESR	Equivalent Series Resistance	$\mathrm{f}=1 \mathrm{MHz}$	-	5.8	-	Ω

Switching Characteristics

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=380 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{aligned}$	(Note 4)	-	20	50	ns
t_{r}	Turn-On Rise Time			-	11	32	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time			-	89	188	ns
t_{f}	Turn-Off Fall Time			-	13	36	ns

Drain-Source Diode Characteristics

I_{S}	Maximum Continuous Drain to Source Diode Forward Current	-	-	15	A	
I_{SM}	Maximum Pulsed Drain to Source Diode Forward Current	-	-	45	A	
$\mathrm{~V}_{\mathrm{SD}}$	Drain to Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=7.5 \mathrm{~A}$	-	-	1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=7.5 \mathrm{~A}$,	-	270	-	ns
Q_{rr}	Reverse Recovery Charge	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	3.6	-	$\mu \mathrm{C}$

Notes:

1. Repetitive rating : pulse-width limited by maximum junction temperature
2. $\mathrm{I}_{\mathrm{AS}}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{SD}} \leq 7.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV}_{\mathrm{DSS}}$, starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
4. Essentially independent of operating temperature typical characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area for FCP260N60E

Figure 11. Maximum Drain Current vs. Case Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Safe Operating Area for FCPF260N60E

Figure 12. Eoss vs. Drain to Source Voltage

Typical Performance Characteristics (Continued)

Figure 13. Transient Thermal Response Curve for FCP260N60E

Figure 14. Transient Thermal Response Curve for FCPF260N60E

Figure 15. Gate Charge Test Circuit \& Waveform

Figure 16. Resistive Switching Test Circuit \& Waveforms

Figure 17. Unclamped Inductive Switching Test Circuit \& Waveforms

NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO

EIAJ SC91A.
B DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
F. OPTION 1 - WITH SUPPORT PIN HOLE.

OPTION 2 - NO SUPPORT PIN HOLE
G. DRAWING FILE NAME: TO220M03REV5

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

