ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

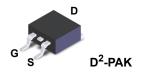
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

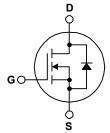
ON Semiconductor®

FDB12N50F

N-Channel UniFETTM FRFET[®] MOSFET 500 V, 11.5 A, 700 m Ω

Features


- $R_{DS(on)}$ = 590 m Ω (Typ.) @ V_{GS} = 10 V, I_{D} = 6 A
- · Low Gate Charge (Typ. 21 nC)
- Low C_{rss} (Typ. 11 pF)
- · 100% Avalanche Tested
- · Improve dv/dt Capability
- · RoHS Compliant


Applications

- · Lighting
- · Uninterruptible Power Supply
- · AC-DC Power Supply

Description

UniFETTM MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET® MOSFET has been enhanced by lifetime control. Its t_{rr} is less than 100nsec and the reverse dv/dt immunity is 15V/ns while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol		Parameter	FDB12N50FTM-WS	Unit	
V _{DSS}	Drain to Source Voltage			500	V
V _{GSS}	Gate to Source Voltage			±30	V
I _D	Drain Current	- Continuous (T _C = 25°C)		11.5	Α
	Diamounem	- Continuous (T _C = 100°C)	- Continuous (T _C = 100°C)		_ A
I_{DM}	Drain Current	- Pulsed	(Note 1)	46	Α
E _{AS}	Single Pulsed Avalanche E	nergy	(Note 2)	456	mJ
I _{AR}	Avalanche Current		(Note 1)	11.5	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	16.5	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	20	V/ns
D	Dower Dissipation	(T _C = 25°C)		165	W
P_{D}	Power Dissipation - Derate above 25°C			1.33	W/°C
T _J , T _{STG}	Operating and Storage Tem	perature Range		-55 to +150	°C
T _L	Maximum Lead Temperatur 1/8" from Case for 5 Secon	•		300	°C

Thermal Characteristics

Symbol	Parameter	FQB12N50FTM_WS	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max	0.75	
В	Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper), Max.	62.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (1 in ² pad of 2 oz copper), Max.	40	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB12N50F	FDB12N50FTM_WS	D2-PAK	330mm	24mm	800 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	$\frac{\text{BV}_{DSS}}{\Delta \text{T}_{J}}$ Breakdown Voltage Temperature $I_D = 250 \mu \text{A}$, Referenced to 25°C - 0.5 - V/°C $\frac{1}{2}$ V/°					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A$, $V_{GS} = 0 V$, $T_J = 25 ^{\circ} C$	500	-	-	V
ΔBV _{DSS} / ΔT _J	• .	I _D = 250μA, Referenced to 25°C	-	0.5	-	V/°C
I	Zoro Cato Voltago Drain Current	V _{DS} = 500V, V _{GS} = 0V	-	-	10	
I _{DSS}	Zero Gate voltage Drain Current	$V_{DS} = 400V, T_C = 125^{\circ}C$	-	-	100	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30V, V_{DS} = 0V$	-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10V, I_{D} = 6A$	-	0.59	0.7	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40V, I_{D} = 6A$	-	12	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V 0V		-	1050	1395	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V$ f = 1MHz		-	135	180	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/12		-	11	17	pF
Q _{g(tot)}	Total Gate Charge at 10V			-	21	30	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 400V, I_{D} = 11.5A$		-	6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{GS} = 10V	(Note 4)	-	9	-	nC

Switching Characteristics

t _{d(on)}	Turn-On Delay Time			-	21	50	ns
t _r	Turn-On Rise Time	V _{DD} = 250V, I _D = 11.5A		-	45	100	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 25\Omega$		-	50	110	ns
t _f	Turn-Off Fall Time		(Note 4)	-	35	80	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current			-	11.5	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	46	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} = 0V, I _{SD} = 11.5A		-	-	1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _{SD} = 11.5A	-	134	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	-	0.37	-	μС

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 6.9mH, I $_{AS}$ = 11.5A, V $_{DD}$ = 50V, R $_{G}$ = 25 Ω , Starting T $_{J}$ = 25 $^{\circ}$ C
- 3. $I_{SD} \le$ 11.5A, di/dt \le 200A/ μ s, $V_{DD} \le$ BV $_{DSS}$, Starting T $_J$ = 25°C
- 4. Essentially Independent of Operating Temperature Typical Characteristics

Typical Characteristics

Figure 1. On-Region Characteristics

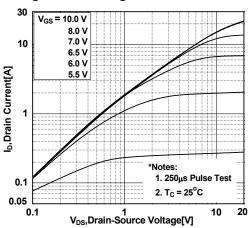


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

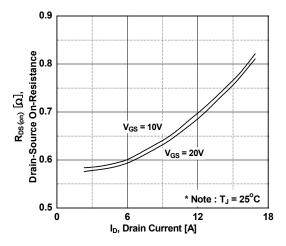


Figure 5. Capacitance Characteristics

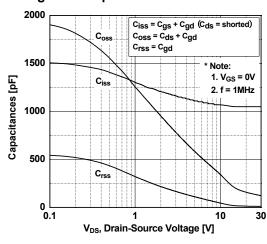


Figure 2. Transfer Characteristics

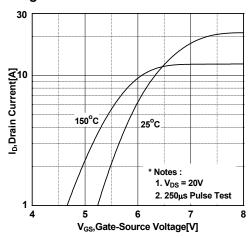


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

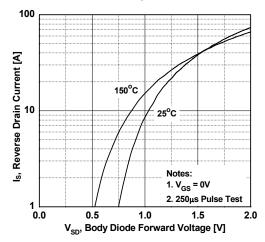
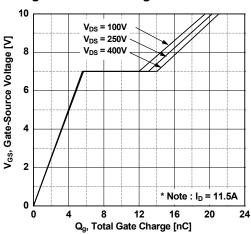



Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

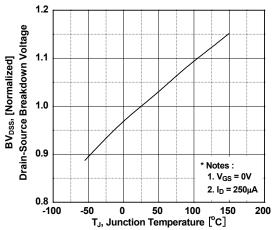


Figure 9. Maximum Drain Current

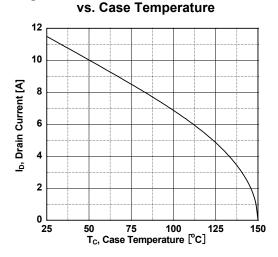


Figure 8. Maximum Safe Operating Area

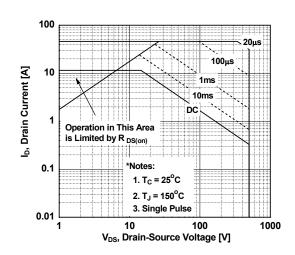


Figure 10. Transient Thermal Response Curve

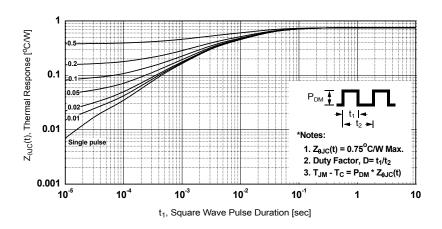


Figure 11. Gate Charge Test Circuit & Waveform

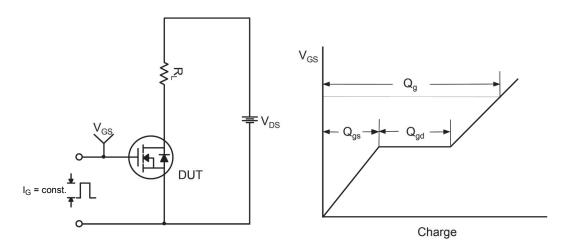


Figure 12. Resistive Switching Test Circuit & Waveforms

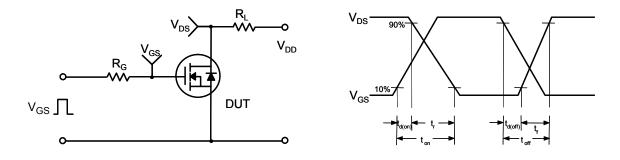
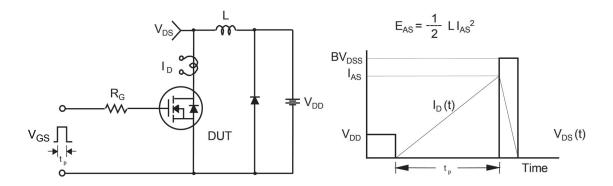



Figure 13. Unclamped Inductive Switching Test Circuit & Waveforms

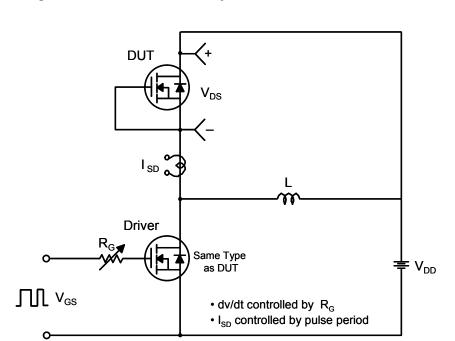
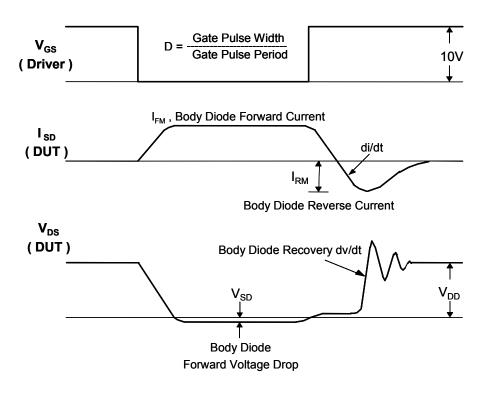



Figure 14. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-263 2L (D²PAK)

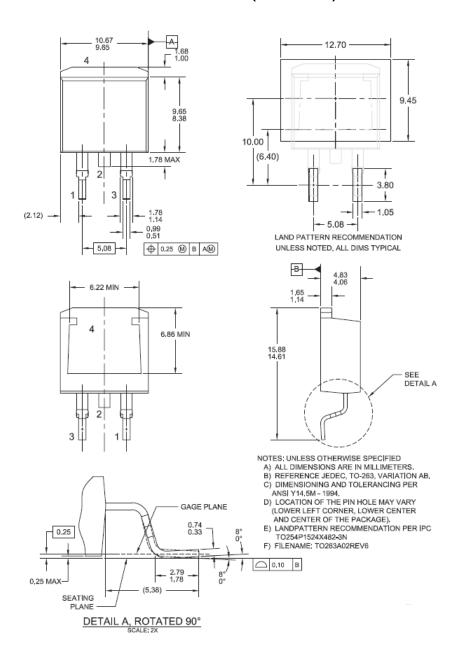


Figure 15. 2LD,TO263, Surface Mount

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

Dimension in Millimeters

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B