MOSFET - UniFET[™], N-Channel 300 V, 28 A, 129 mΩ

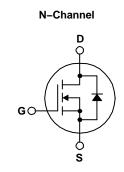
FDB28N30TM

Description

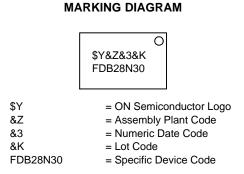
UniFET [™] MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- Typical $R_{DS(on)} = 108 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14 \text{ A}$
- Low Gate Charge (Typical $Q_g = 39 \text{ nC}$)
- Low Reverse Transfer Capacitance C_{rss} (Typical $C_{rss} = 35 \text{ pF}$)
- 100% Avalanche Tested
- This Device is Pb-Free and is RoHS Compliant


Applications

- Uninterruptible Power Supply
- AC–DC Power Supply


ON Semiconductor®

www.onsemi.com

D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		300	V
V _{GSS}	Gate to Source Voltage		±30	V
I _D	Drain Current –Continuous ($T_C = 25^{\circ}C$)		28	А
	–Continuous (T _C = 100°C)		19	
I _{DM}	Drain Current –Pulsed	(Note 1)	112	А
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	588	mJ
I _{AR}	Avalanche Current	(Note 1)	28	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	25	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation $(T_C = 25^{\circ}C)$		250	W
	-Derate above 25°C		2.0	W/°C
TJ, T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case	e for 5 seconds	300	°C

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature 2. L = 1.5 mH, I_{AS} = 28 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C 3. $I_{SD} \le 28$ A, di/dt ≤ 200 A/µs, $V_{DD} \le BV_{DSS}$, starting T_J = 25°C

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Units
ReJC	Maximum Thermal Resistance, Junction to Case	0.5	°C/W
Reja	Maximum Thermal Resistance, Junction to Ambient (1 in2 Pad of 2-oz Copper)	40	°C/W
Reja	Maximum Thermal Resistance, Junction to Ambient (Minimum Pad of 2–oz Copper)	62.5	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping [†]
FDB28N30TM	FDB28N30	D ² PAK–3 (TO–263, 3–LEAD) (Pb–Free)	800 units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Min.	Тур.	Max.	Units			
OFF CHARACTERISTICS								
Drain to Source Breakdown Voltage	I_D = 250 $\mu\text{A},~\text{V}_{GS}$ = 0 V, T_J = 25°C	300			V			
Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C		0.4		V/∘C			
Drain-to-Source Leakage Current	$V_{DS} = 300 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ			
	$V_{DS} = 240 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			10				
Gate to Body Leakage Current	V_{GS} = ±30 V, V_{DS} = 0 V			±100	nA			
	ACTERISTICS Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Drain-to-Source Leakage Current	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}, \ referenced to 25^{\circ}\text{C}$ Drain-to-Source Leakage Current $V_{DS} = 300 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = 240 \ V, \ T_C = 125^{\circ}\text{C}$	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ 300Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}, \ referenced to 25^{\circ}\text{C}$ 300Drain-to-Source Leakage Current $V_{DS} = 300 \ V, \ V_{GS} = 0 \ V$ V	ACTERISTICS Drain to Source Breakdown $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ 300 Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ \text{referenced to } 25^{\circ}\text{C}$ 300 Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ \text{referenced to } 25^{\circ}\text{C}$ 0.4 Drain-to-Source Leakage $V_{DS} = 300 \ V, \ V_{GS} = 0 \ V$ 0.4 VDS = 240 V, \ T_C = 125^{\circ}\text{C} 0	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ 30010Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}, \ referenced to 25^{\circ}\text{C}$ 0.40.4Drain-to-Source Leakage Current $V_{DS} = 300 \ V, \ V_{GS} = 0 \ V$ 11 $V_{DS} = 240 \ V, \ T_C = 125^{\circ}\text{C}$ 1010			

ON CHARACTERISTICS

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14 A		0.108	0.129	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 14 \text{ A}$		24.8		S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	1690	2250	pF
C _{oss}	Output Capacitance		305	405	pF
C _{rss}	Reverse Transfer Capacitance		35	50	pF
Qg	Total Gate Charge at 10 V	V_{DS} = 240 V, I _D = 28 A, V _{GS} = 10 V	39	50	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	12		nC
Q _{gd}	Gate to Drain "Miller" Charge		17		nC

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	V_{DD} = 150 V, I_{D} = 28 A, V_{GS} = 10V, R_{G} = 25 Ω	35	80	ns
tr	Turn–On Rise Time	(Note 4)	135	280	ns
t _{d(off)}	Turn-Off Delay Time		79	168	ns
t _f	Turn–Off Fall Time		69	148	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

I _S	Maximum Continuous Drain to Source Diode Forward Current			28	A
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			112	A
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 28 \text{ A}$		1.4	V
t _{rr}	Reverse Recovery Time	V_{GS} = 0 V, I _{SD} = 28 A, dI _F /dt = 100 A/µs	279		ns
Q _{rr}	Reverse Recovery Charge		2.7		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

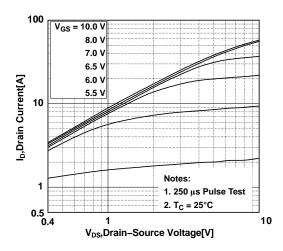


Figure 1. On–Region Characteristics

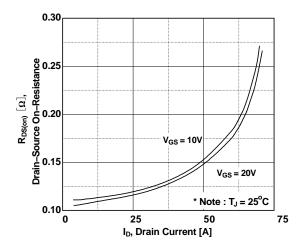


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

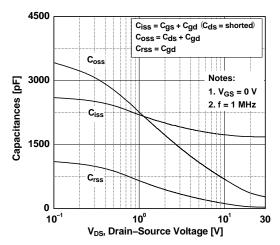
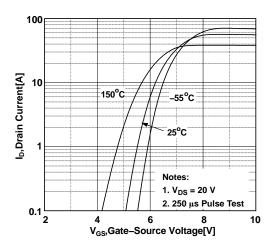



Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

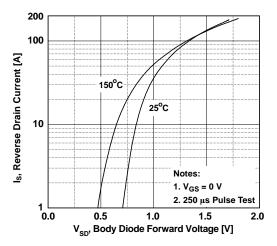
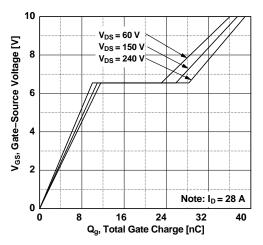



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

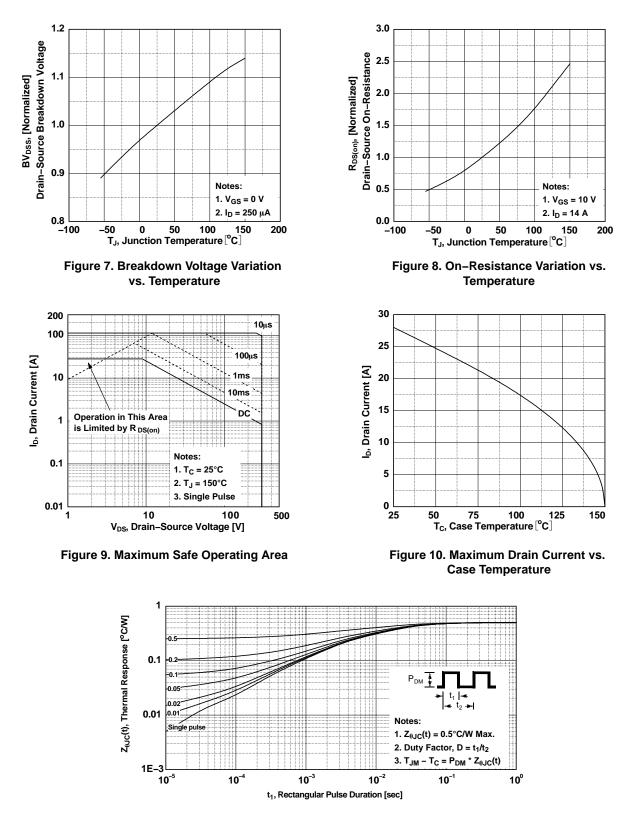
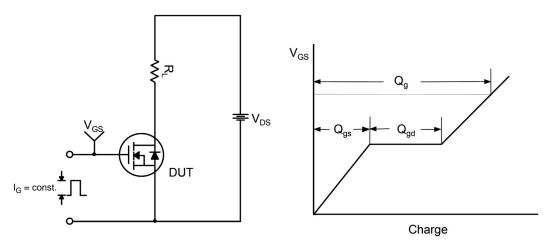



Figure 11. Transient Thermal Response Curve

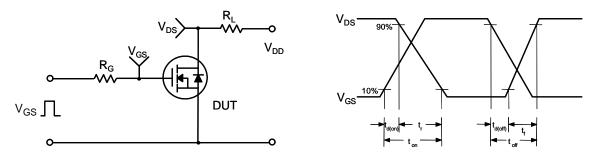


Figure 13. Resistive Switching Test Circuit & Waveform

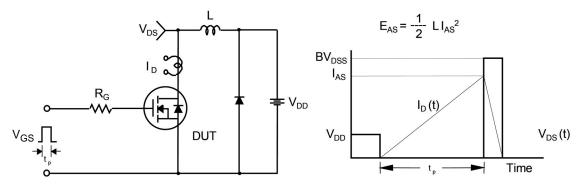


Figure 14. Unclamped inductive Switching Test Circuit & Waveform

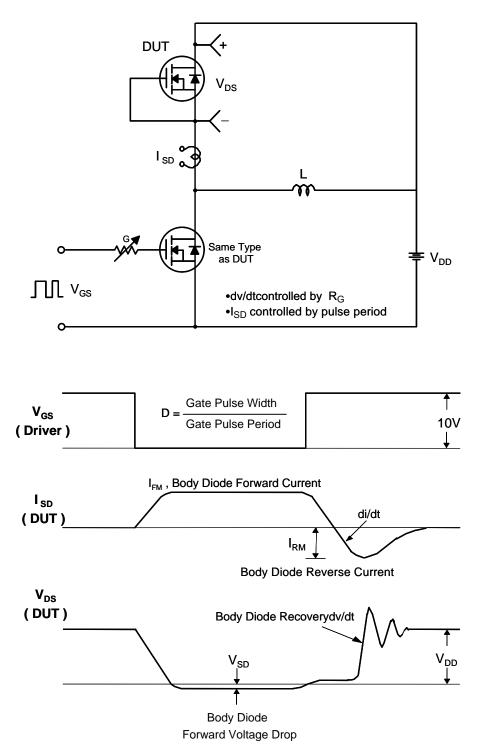
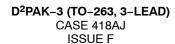
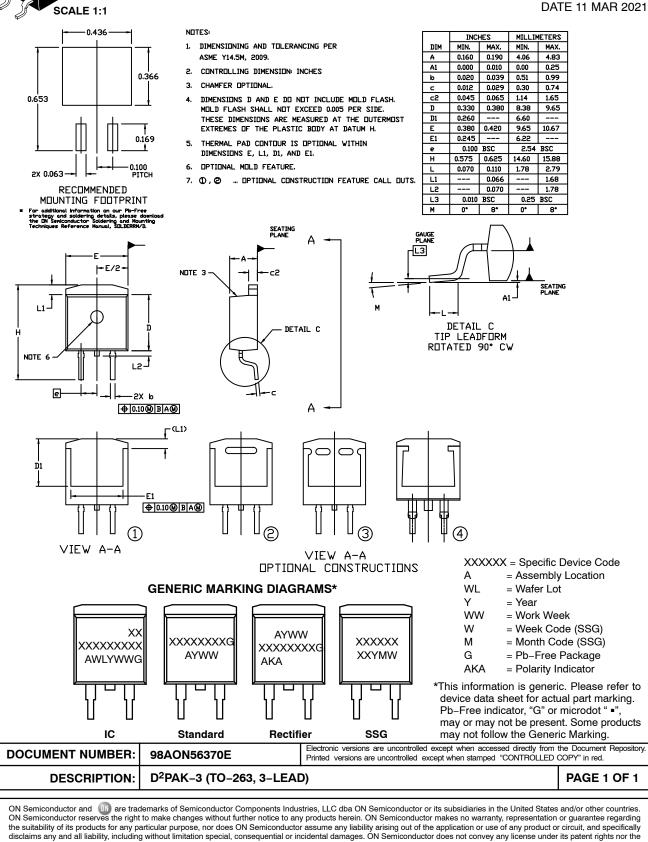



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveform


UniFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7