

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FDP8880 / FDB8880

May 2008

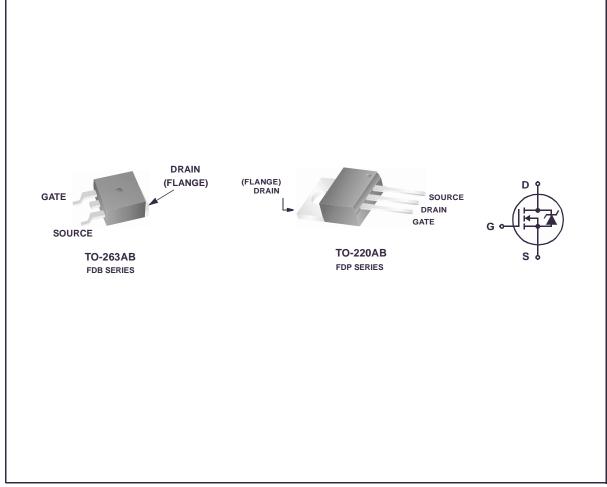
FAIRCHILD

SEMICONDUCTOR®

FDP8880 / FDB8880 N-Channel PowerTrench[®] MOSFET 30V, 54A, 11.6mΩ

Features

- $r_{DS(ON)} = 14.5m\Omega$, $V_{GS} = 4.5V$, $I_D = 40A$
- r_{DS(ON)} = 11.6mΩ, V_{GS} = 10V, I_D = 40A
- High performance trench technology for extremely low ^rDS(ON)
- Low gate charge
- High power and current handling capability
- RoHS Complicant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.

Application

DC / DC Converters

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	54	A
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$)	48	A
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)	11	A
	Pulsed	Figure 4	A
- AS	Single Pulse Avalanche Energy (Note 1)	31	mJ
	Power dissipation	55	W
D	Derate above 25°C	0.37	W/ºC
J, T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case TO-220, TO-263	2.73	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-220, TO-262 (Note 2)	62	°C/W
$R_{ hetaJA}$	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area	43	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP8880	FDP8880	TO-220AB	Tube	N/A	50 units
FDB8880	FDB8880	TO-263AB	330mm	24mm	800 units

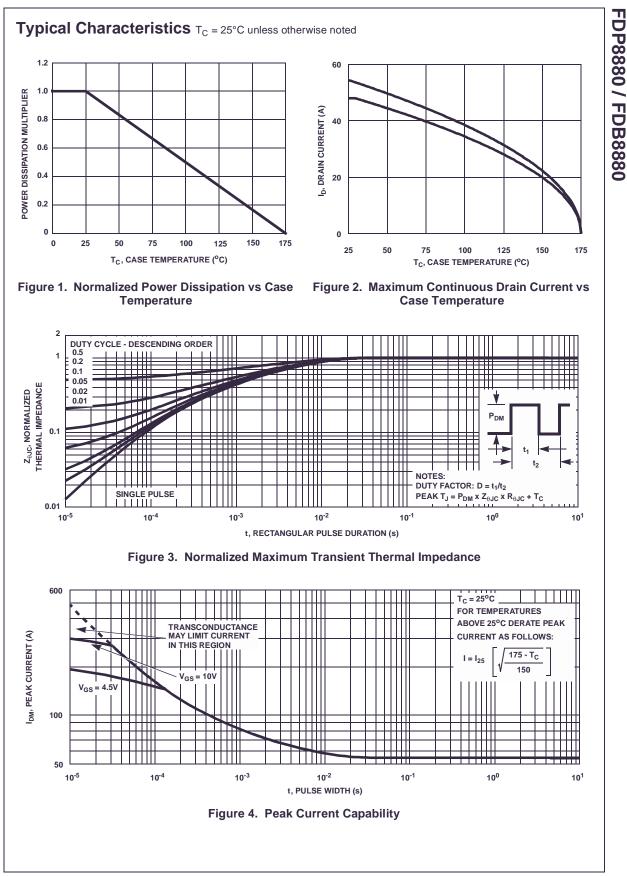
Electrical Characteristics $T_{C} = 25^{\circ}C$ unless otherwise noted

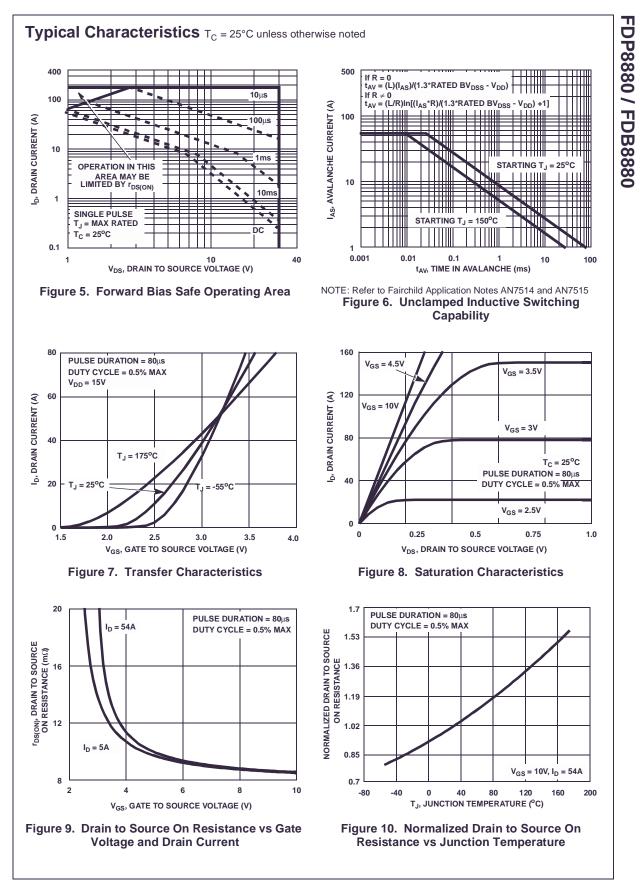
DSS Zero Gate Voltage Drain Current	ge $I_D = 250\mu A, V_{GS} = 0V$ $V_{DS} = 24V$ $V_{GS} = 0V$ $T_C = 150^{\circ}C$ $V_{GS} = \pm 20V$	30 - -		- 1 250	V µA
DSS Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$	-	-	1	
I _{DSS} Zero Gate Voltage Drain Current	$V_{GS} = 0V \qquad T_C = 150^{\circ}C$				uА
		-	-	250	μΛ
I _{GSS} Gate to Source Leakage Current	$1/2 = \pm 201/$		1	230	1
	$v_{GS} = \pm 20 v$	-	-	±100	nA
On Characteristics					
V _{GS(TH)} Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.2	-	2.5	V
	$I_{D} = 40A, V_{GS} = 10V$	-	0.0095	0.0116	Ω
r _{DS(ON)} Drain to Source On Resistance	$I_{D} = 40A, V_{GS} = 4.5V$	-	0.012	0.0145	
	$I_D = 40A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	0.015	0.019	

FDP8880 / FDB8880

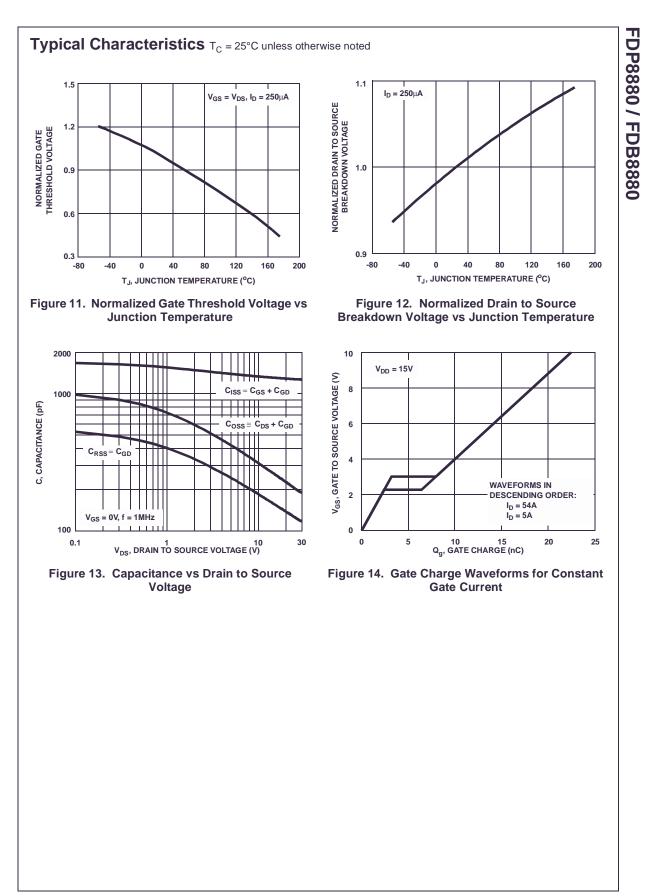
Dynamic	Characteristics					
C _{ISS}	Input Capacitance		-	1240	-	pF
C _{OSS}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	-	255	-	pF
C _{RSS}	Reverse Transfer Capacitance			147	-	pF
R _G	Gate Resistance	$V_{GS} = 0.5V, f = 1MHz$	-	2.7	-	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V$ to 10V	-	22	29	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$	-	12	16	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$ $V_{DD} = 15V$ $I_D = 40A$	-	1.6	2.1	nC
Q _{gs}	Gate to Source Gate Charge	$I_D = 40A$ $I_a = 1.0mA$	-	3.2	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	2.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	4.8	-	nC

Switching Characteristics ($V_{GS} = 10V$)


t _{ON}	Turn-On Time		-	-	171	ns
t _{d(ON)}	Turn-On Delay Time		-	8	-	ns
t _r	Rise Time	V _{DD} = 15V, I _D = 40A	-	107	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 13.6\Omega$	-	47	-	ns
t _f	Fall Time		-	51	-	ns
t _{OFF}	Turn-Off Time		-	-	147	ns


Drain-Source Diode Characteristics

M.	Source to Drain Diode Voltage	I _{SD} = 40A	-	-	1.25	V
V _{SD}	Source to Drain Diode voltage	I _{SD} = 3.5A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	27	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	18	nC


Notes: 1: Starting $T_J = 25^{\circ}$ C, L = 34uH, I_{AS} = 43A,Vdd = 27V, Vgs = 10V. 2: Pulse width = 100s.

FDP8880 / FDB8880

©2008 Fairchild Semiconductor Corporation FDP8880 / FDB8880 Rev. A1

FDP8880 / FDB8880 **Test Circuits and Waveforms** V_{DS} BV_{DSS} L. V_{DS} VARY tP TO OBTAIN IAS V_{DD} REQUIRED PEAK IAS R_G li∢ VDD V_{GS} DUT AS **0.01**Ω t_{AV} -> Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms

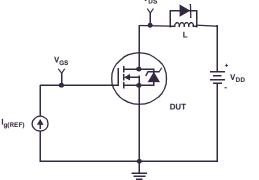


Figure 17. Gate Charge Test Circuit

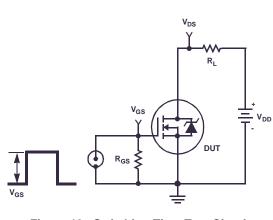
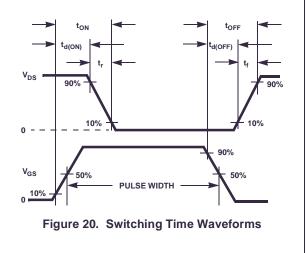
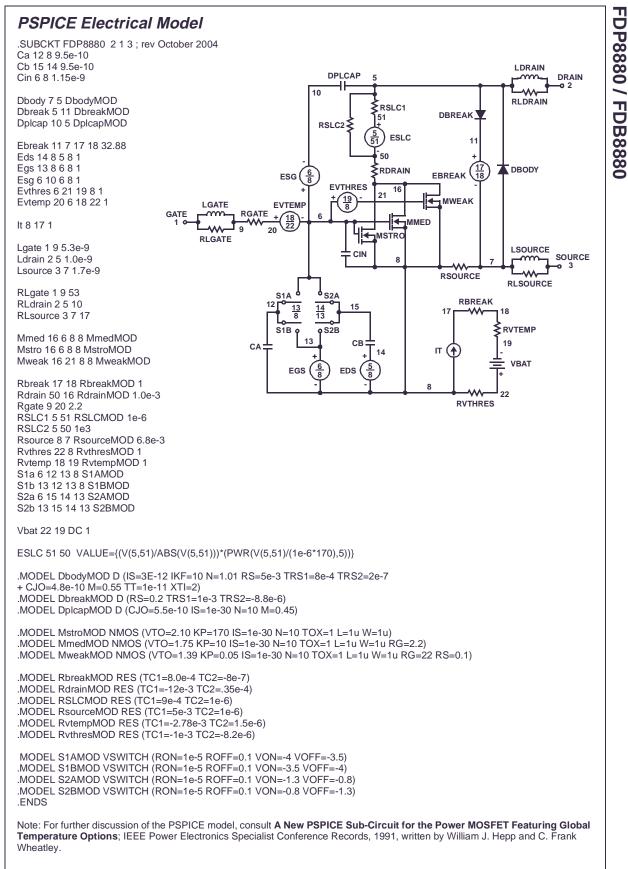
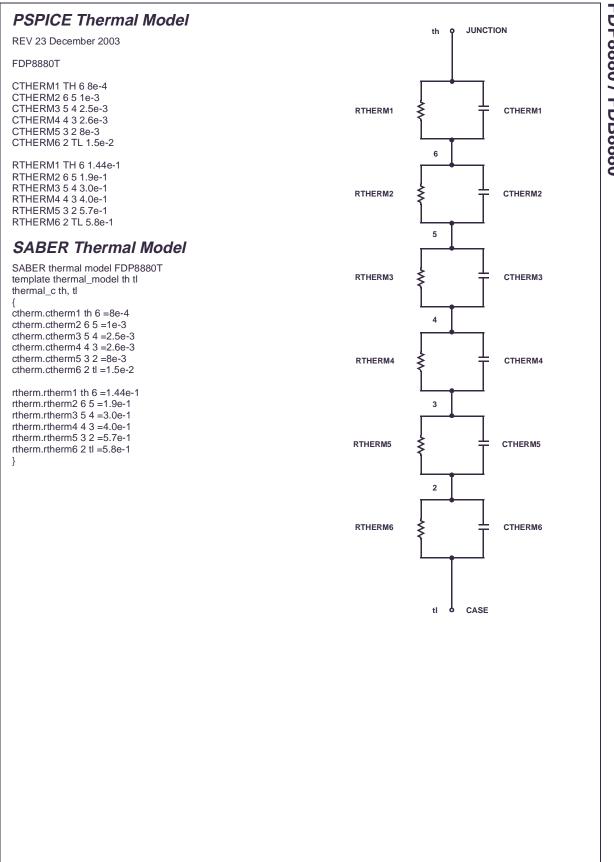




Figure 19. Switching Time Test Circuit

 V_{DD} $V_{Qg(TOT)}$ $V_{GS} = 10V$ $V_{GS} = 1V$ $V_{GS} = 5V$ $V_{GS} = 1V$ $V_{GS} = 5V$ $V_{GS} = 1V$ $V_{GS} = 5V$

Figure 18. Gate Charge Waveforms


SABER Electrical Model rev October 2004 template FDP8880 n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl=3e-12,ikf=10,nl=1.01,rs=5e-3,trs1=8e-4,trs2=2e-7,cjo=4.8e-10,m=0.55,tt=1e-11,xti=2) dp..model dbreakmod = (rs=0.2.trs1=1e-3.trs2=-8.8e-6)dp..model dplcapmod = (cjo=5.5e-10,isl=10e-30,nl=10,m=0.45) m..model mstrongmod = (type=_n,vto=2.10,kp=170,is=1e-30, tox=1) m..model mmedmod = $(type=_n, vto=1.75, kp=10, is=1e-30, tox=1)$ m..model mweakmod = (type=_n,vto=1.39,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5) LDRAIN sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4) DPLCAP DRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.3,voff=-0.8) 10 *** sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.8,voff=-1.3) RLDRAIN c.ca n12 n8 = 9.5e-10RSLC1 c.cb n15 n14 = 9.5e-10 51 RSLC2 ₹ c.cin n6 n8 = 1.15e-9 ISCI dp.dbody n7 n5 = model=dbodymod DBREAK 50 dp.dbreak n5 n11 = model=dbreakmod RDRAIN <u>6</u> 8 dp.dplcap n10 n5 = model=dplcapmod ESG 11 DBODY EVTHRES 16 spe.ebreak n11 n7 n17 n18 = 32.88 (<u>19</u>) 8 MWEAK 4 LGATE EVTEMP spe.eds n14 n8 n5 n8 = 1 RGATE GATE \mathcal{M} spe.egs n13 n8 n6 n8 = 1 18 22 EBREAK MMED 9 20 MSTRO spe.esg n6 n10 n6 n8 = 1 RLGATE spe.evthres n6 n21 n19 n8 = 1 I SOURCE CIN spe.evtemp n20 n6 n18 n22 = 1 SOURCE 8 • RSOURCE ~~~ i.it n8 n17 = 1 RLSOURCE S1 4 I.lgate n1 n9 = 5.3e-9 RBREAK <u>13</u> 8 <u>14</u> 13 I.Idrain n2 n5 = 1.0e-9 17 18 I.lsource n3 n7 = 1.7e-9 ≷RVTEMP S1B o S2B 13 СВ 19 res.rlgate n1 n9 = 53 СА (IT 14 res.rldrain n2 n5 = 10 VBAT res.rlsource n3 n7 = 17 5 EGS EDS 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u 22 m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RVTHRES m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=8.0e-4,tc2=-8e-7 res.rdrain n50 n16 = 1.0e-3, tc1=-12e-3,tc2=.35e-4 res.rgate n9 n20 = 2.2 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 6.8e-3, tc1=5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-1e-3,tc2=-8.2e-6 res.rvtemp n18 n19 = 1, tc1=-2.78e-3,tc2=1.5e-6 sw vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations {

DP8880 / FDB8880

i (n51->n50) +=iscl

}

iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5)))

FDP8880 / FDB8880

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ ACEx® PDP-SPM™ The Power Franchise[®] F-PFS™ Power-SPM™ Build it Now™ power CorePLUS™ **FRFET**® PowerTrench[®] franchise CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinvBoost™ **QFET**® CROSSVOLT™ Green FPS™ TinyBuck™ CTL™ QS™ TinyLogic® Green FPS™ e-Series™ GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ **EcoSPARK**[®] IntelliMAX™ RapidConfigure™ TinyPower™ ISOPLANAR™ EfficentMax™ Saving our world 1mW at a time™ TinyPWM™ EZSWITCH™ * MegaBuck™ SmartMax™ TinyWire™ µSerDes™ MICROCOUPLER™ SMART START™ MicroFET™ SPM[®] N MicroPak™ STEALTH™ airchild® UHC® MillerDrive™ SuperFET™ Fairchild Semiconductor® MotionMax™ SuperSOT™-3 Ultra FRFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ SuperSOT™-8 FACT® **OPTOLOGIC**[®] VCX™ FAST® **OPTOPLANAR[®]** SuperMOS™ VisualMax™ FastvCore™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter[®] *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Term

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B