FDBL0630N150

MOSFET - N-Channel, POWERTRENCH ${ }^{\circledR}$

150 V, 169 A, 6.3 m Ω

Features

- Typ $\mathrm{r}_{\mathrm{DS}(\text { on })}=5 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$
- Typ $\mathrm{Q}_{\mathrm{g}(\mathrm{tot})}=70 \mathrm{nC}$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$
- UIS Capability
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

Applications

- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Parameter	Ratings	Unit
VDSS	Drain to Source Voltage	150	V
VGS	Gate to Source Voltage	± 20	V
I_{D}	Drain Current - Continuous ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)	169	A
	Pulsed Drain Current $\quad \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	See Figure 4	
EAS	Single Pulse Avalanche Energy (Note 2)	502	mJ
$P_{\text {D }}$	Power Dissipation	500	W
	Derate above $25^{\circ} \mathrm{C}$	3.3	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {StG }}$	Operating and Storage Temperature	-55 to +175	C
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance Junction to Case	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Maximum Thermal Resistance Junction to Ambient (Note 3)	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Current is limited by junction temperature.
2. Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0.24 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=64 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}$ during inductor charging and $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ during time in avalanche.
3. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\mathrm{R}_{\theta \mathrm{JC}}$ is guaranteed by design while $\mathrm{R}_{\theta \mathrm{JA}}$ is determined by the user's board design. The maximum rating presented here is based on mounting on a $1 \mathrm{in}^{2}$ pad of 2 oz copper.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathbf{V}_{\text {DSS }}$	$\mathbf{r}_{\mathrm{DS}(\mathrm{ON})}$ MAX	\mathbf{I}_{D} MAX
150 V	$6.3 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	169 A

MOSFET - N-Channel

H-PSOF8L 11.68x9.80
CASE 100CU

MARKING DIAGRAM

$\$ Y$	$=$ ON Semiconductor Logo
$\& Z$	$=$ Assembly Plant Code
$\& 3$	$=$ Date Code
$\& K$	$=$ Lot Run Traceability Code
FDBL0630N150	$=$ Specific Device Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
B VDSs	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		150	-	-	V
I DSS	Drain to Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=150 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ (Note 4)	-	-	1	mA
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		-	-	± 100	nA

ON CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		2.0	2.8	4.0	V
${ }^{\text {r }}$ DS(on)	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	5	6.3	$\mathrm{m} \Omega$
			$\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ (Note 4)	-	14	17.5	$\mathrm{m} \Omega$

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	5805	-	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	536	-	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		-	16	-	pF
R_{g}	Gate Resistance	$\mathrm{f}=1 \mathrm{MHz}$	-	2.2	-	Ω
$\mathrm{Q}_{\mathrm{g}(\text { (TOT) }}$	Total Gate Charge at 10 V	$\mathrm{V}_{\mathrm{GS}}=0$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$	-	70	90	nC
$\mathrm{Q}_{\mathrm{g} \text { (th) }}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0$ to $2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$	-	10.5	13	nC
Q_{gs}	Gate to Source Gate Charge	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$	-	32.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$	-	10	-	nC

SWITCHING CHARACTERISTICS

$\mathrm{t}_{\text {on }}$	Turn-On Time	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega$	-	-	80	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time		-	39	-	ns
t_{r}	Rise Time		-	30	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	70	-	ns
t_{f}	Fall Time		-	23	-	ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time		-	-	130	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

$\mathrm{V}_{\text {SD }}$	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1.2	V
T_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}, \mathrm{dl}_{\text {SD }} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}}=120 \mathrm{~V}$	-	108	125	ns
Q_{rr}	Reverse Recovery Charge		-	323	467	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The maximum value is specified by design at $\mathrm{T}_{J}=175^{\circ} \mathrm{C}$. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Saturation Characteristics

Figure 6. Unclamped Inductive Switching Capability

Figure 8. Forward Diode Characteristics

Figure 10. Saturation Characteristics

TYPICAL CHARACTERISTICS (continued)

Figure 11. Rdson vs. Gate Voltage

Figure 13. Normalized Gate Threshold Voltage vs. Temperature

Figure 15. Capacitance vs Drain to Source Voltage

Figure 12. Normalized Rdson vs. Junction Temperature

Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 16. Gate Charge vs Gate to Source Voltage

FDBL0630N150

ORDERING INFORMATION

Device	Device Marking	Package	Shipping †
FDBL0630N150	FDBL0630N150	H-PSOF8L 11.68×9.80 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

H-PSOF8L 11.68x9.80

CASE 100CU
ISSUE A
DATE 06 JAN 2020

SIDE VIEW

LAND PATTERN

RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING

AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

1. PACKAGE STANDARD REFERENCE: JEDEC MO-299, ISSUE A 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO THE EXPOSED WELL AS THE TERMINALS.
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS dEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS			DIM	MILLIMETERS		
	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.
A	2.20	2.30	2.40	e		20 BSC	
A3	0.40	0.50	0.60	e/2		60 BSC	
b	0.70	0.80	0.90	e1		40 BS	
b1	8.00 REF			K	1.50	1.57	1.70
c	0.40	0.50	0.60	L	1.90	2.00	2.10
c1	0.10	---	---	L2	0.50	0.60	0.70
D	9.70	9.80	9.90	Z		35 RE	
D1	9.80	9.90	10.00	Θ	0°	---	12°
D2	4.73 BSC			aaa		0.20	
D3	0.40 REF			bbb		0.25	
D4	3.75 BSC			CCC		0.20	
D5	---	1.20	---	ddd		0.20	
D6	7.40	7.50	7.60	eee		0.10	
D7	(8.30)			E5	---	3.30	---
E	11.58	11.68	11.78	E6	---	0.65	---
E1	10.28	10.38	10.48	E7	7.15 REF		
E2	0.60	0.70	0.80	E8	6.55	6.65	6.75
E3	3.30 REF			E9	5.89 BSC		
E4	---	2.60	---	E10	5.19 BSC		

A = Assembly Location
Y = Year
WW = Work Week
ZZ = Assembly Lot Code
XXXX = Specific Device Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON13813G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | H-PSOF8L 11.68x9.80 | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

