ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

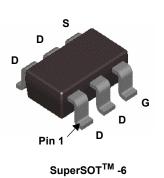
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

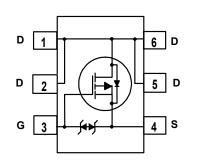
ON Semiconductor®

FDC638APZ P-Channel 2.5V PowerTrench[®] Specified MOSFET

-20V, -4.5A, 43m Ω Features

- Max $r_{DS(on)}$ = 43m Ω at V_{GS} = -4.5V, I_D = -4.5A
- Max $r_{DS(on)}$ = 68m Ω at V_{GS} = -2.5V, I_D = -3.8A
- Low gate charge (8nC typical).
- High performance trench technology for extremely low r_{DS(on)}.
- SuperSOTTM –6 package:small footprint (72% smaller than
- standard SO–8) low profile (1mm thick). RoHS Compliant


General Description


This P-Channel 2.5V specified MOSFET is produced using ON Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance

These devices are well suited for battery power applications:load switching and power management,battery charging circuits,and DC/DC conversion.

Application

■ DC - DC Conversion

MOSFET Maximum Ratings TA= 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units		
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±12	V	
ID	Drain Current -Continuous	(Note 1a)	-4.5	•	
	-Pulsed		-20	A	
P _D	Power Dissipation	(Note 1a)	1.6	- W	
	Power Dissipation	(Note 1b)	0.8		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

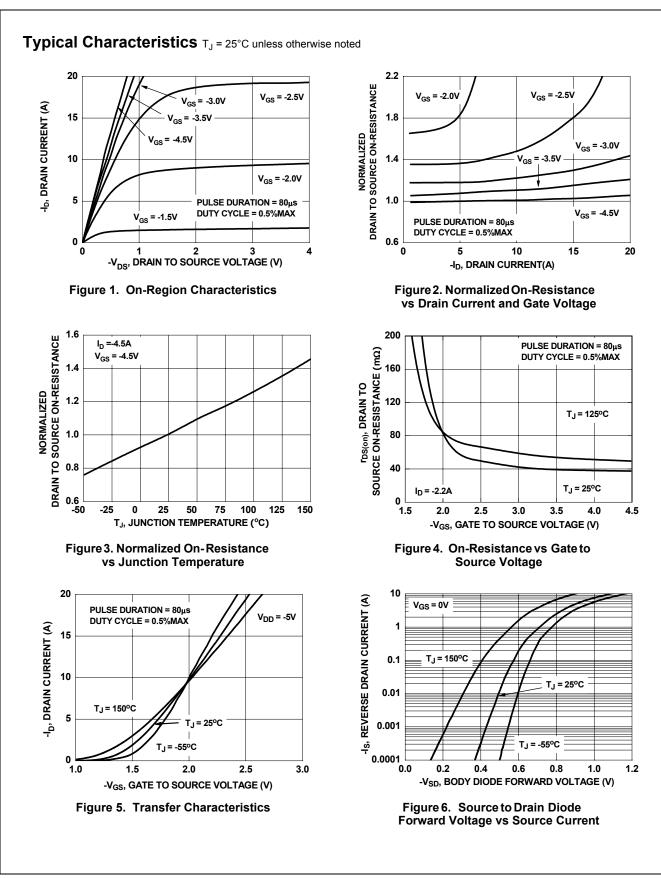
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	156	0/11

Package Marking and Ordering Information

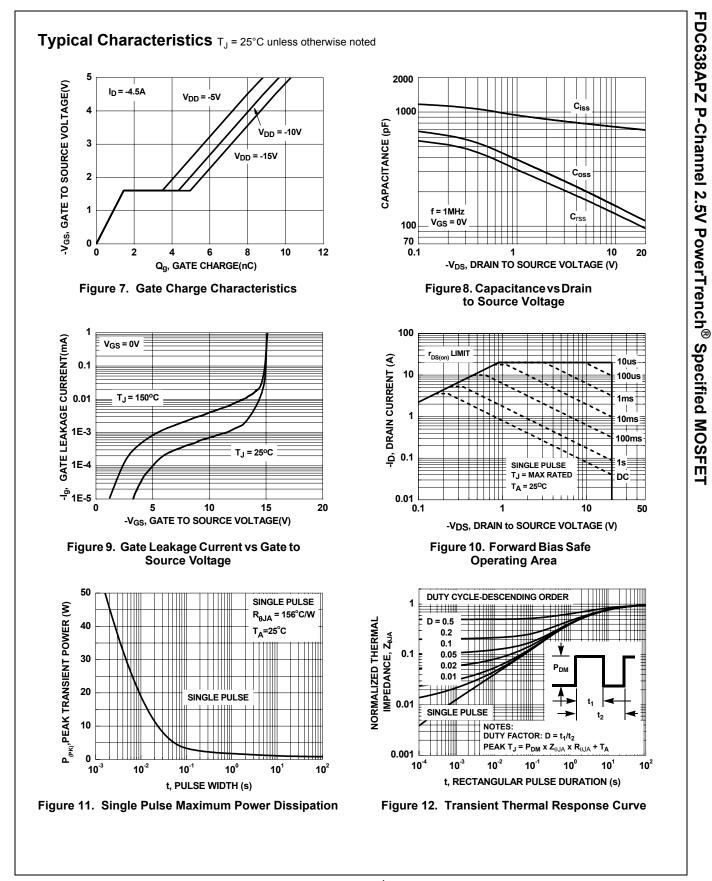
Device Marking	Device	Reel Size	Tape Width	Quantity
.638Z	FDC638APZ	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units	
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-20			V	
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25°C		-9.4		mV/°C	
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16V,$ $V_{GS} = 0V$ $T_J = 55^{\circ}C$			-1 -10	μA	
GSS	Gate to Source Leakage Current	$V_{GS} = 0V T_J = 55^{\circ}C V_{GS} = \pm 12V, V_{DS} = 0V$			±10	μA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.8	-1.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{.l}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		2.9		mV/°C	
r _{DS(on)}		$V_{GS} = -4.5V, I_D = -4.5A$		37	43		
	Static Drain to Source On Resistance	$V_{GS} = -2.5V, I_D = -3.8A$		52	68	mΩ	
		$V_{GS} = -4.5V, I_D = -4.5A, T_J = 125^{\circ}C$		50	72	-	
D(on)	On-State Drain Current	$V_{GS} = -10V, V_{DS} = -4.5A$	-20			Α	
9FS	Forward Transconductance	$V_{DS} = -10V$, $I_{D} = -4.5A$		18		S	
Ciss Coss Crss	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = –10V, V _{GS} = 0V, f = 1MHz		750 155 130	1000 210 195	pF pF pF	
	g Characteristics (Note 2)			100	100	P	
	Turn-On Delay Time			6	12	ns	
d(on) r	Rise Time	V _{DD} = -5V, I _D = -4.5A		20	31	ns	
	Turn-Off Delay Time	V_{GS} = -4.5V, R_{GEN} = 6 Ω		48	77	ns	
d(off)	Fall Time	-		47	72	ns	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -5V$		8	12	nC	
<u>∽g(101)</u> Ω _{gs}	Gate to Source Gate Charge	$V_{DD} = -3.0$ $I_{D} = -4.5A$		2	.=	nC	
∽ <u>gs</u> Q _{qd}	Gate to Drain "Miller" Charge			2		nC	
0	urce Diode Characteristics						
	Maximum Continuous Drain-Source Diod	de Forward Current			-1.3	А	
s V _{SD}	Source to Drain Diode Forward Voltage			-0.8	-1.2	V	
	Reverse Recovery Time	$V_{GS} = 0V, v_S = -1.3A$ (Note 2) $I_F = -4.5A, di/dt = 100A/\mu s$		24	36	ns	
						nC	
t _{rr} Q _{rr} Notes:	Reverse Recovery Charge	$I_F = -4.5A$, di/dt = 100A/µs where the case thermal reference is defined as the		13	20	n	

00000


2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

a 1 in² pad of 2 oz copper on FR-4 board.



minimum pad of 2 oz copper.

www.onsemi.com 2

www.onsemi.com 3

www.onsemi.com 4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7