MOSFET – N-Channel, Shielded Gate, POWERTRENCH[®]

150 V, 2.3 A, 144 m Ω

FDC86244

General Description

This N–Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Features

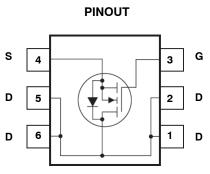
- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 144 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 2.3 \text{ A}$
- Max $r_{DS(on)} = 188 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 1.9 \text{ A}$
- High Performance Trench Technology for Extremely Low r_{DS(on)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- Fast Switching Speed
- 100% UIL Tested
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

Applications

- Load Switch
- Synchronous Rectifier
- Primary Switch

ON Semiconductor®

www.onsemi.com


TSOT23 6-Lead CASE 419BL

MARKING DIAGRAM

XXX = Specific Device Code

- &E = Space Designator
- &Y = Year of Production &. = Pin One Identifier
- = Phi One identifier
 = Pb-Free Package
- = PD-Free Package

SuperSOTTM-6

ORDERING INFORMATION

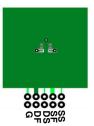
See detailed ordering and shipping information on page 2 of this data sheet.

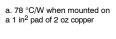
MOSFET MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise noted

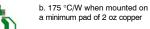
Symbol	Parameter	Ratings	Units
V _{DS}	Drain to Source Voltage	150	V
V _{GS}	Gate to Source Voltage	±20	V
Ι _D	Drain Current – Continuous (Note 1a) – Pulsed	2.3 10	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	12	mJ
PD	Power Dissipation (Note 1a)	1.6	W
	Power Dissipation (Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Units
Rejc	Thermal Resistance, Junction to Case	30	°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 1a)	78	

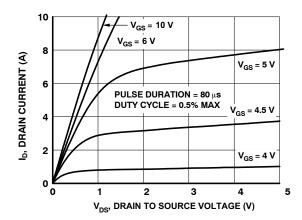

PACKAGE MARKING AND ORDERING INFORMATION


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
0.244	FDC86244	SSOT-6	7"	8 mm	3000 Units


ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
OFF CH	ARACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$		150			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C			103		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V				1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				±100	nA
ON CHA	ARACTERISTICS				-		-
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		2.0	2.5	4.0	V
ΔV _{GS(th)} ΔT _J	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C			-9		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 2.3 A			113	144	mΩ
		V _{GS} = 6 V, I _D = 1.9 A			128	188	
		V _{GS} = 10 V, I _D = 2.3 A, T _J = 125 °C			214	273	
9 FS	Forward Transconductance	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 2.3 \text{ A}$			6		S
DYNAMI	IC CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 75 V, V _{GS} = 0 V, f = 1 MHz			260	345	pF
Coss	Output Capacitance				32	45	pF
C _{rss}	Reverse Transfer Capacitance				1.7	5	pF
Rg	Gate Resistance	1			1.3		Ω
SWITCH	ING CHARACTERISTICS			•			
t _{d(on)}	Turn–On Delay Time	V_{DD} = 75 V, I_D = 2.3 A, V_{GS} = 10 V, R_{GEN} = 6 Ω			4.7	10	ns
t _r	Rise Time				1.4	10	ns
t _{d(off)}	Turn–Off Delay Time				10	20	ns
t _f	Fall Time	-			3.1	10	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V	V _{DD} = 75 V		4.2	6	nC
	Total Gate Charge	V _{GS} = 0 V to 5 V			2.4	4	nC
Q _{gs}	Total Gate Charge	I _D = 2.3 A			1.0		nC
Q _{qd}	Gate to Drain "Miller" Charge	1			1.0		nC
5	SOURCE DIODE CHARACTERISTICS					1	<u> </u>
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.3 A (Note 2)			0.8	1.3	V
t _{rr}	Reverse Recovery Time	I _F = 2.3 A, di/dt = 100 A/	μs		45	73	ns
Q _{rr}	Reverse Recovery Charge	-		—	33	53	nC

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.



იხბაა

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ Unless Otherwise Noted

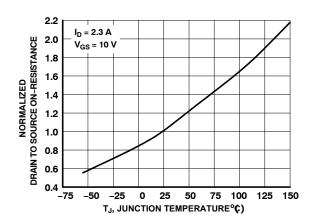


Figure 3. Normalized On– Resistance vs Junction Temperature

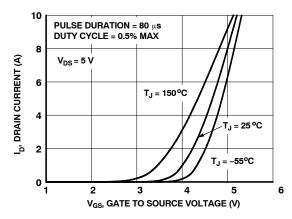


Figure 5. Transfer Characteristics

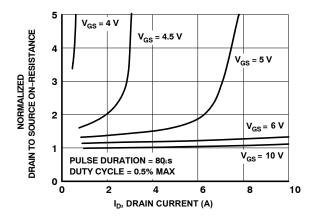


Figure 2. Normalized On–Resistance vs Drain Current and Gate Voltage

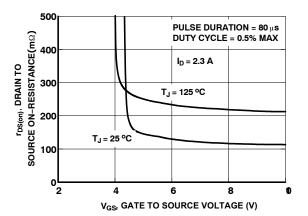


Figure 4. On–Resistance vs Gate to Source Voltage

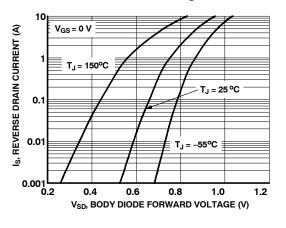
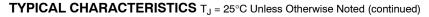



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

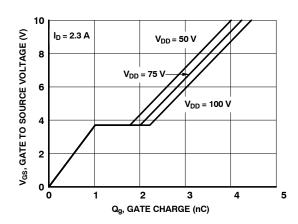
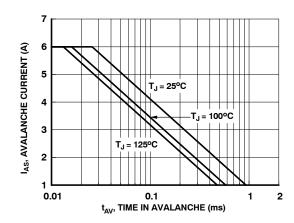



Figure 7. Gate Charge Characteristics

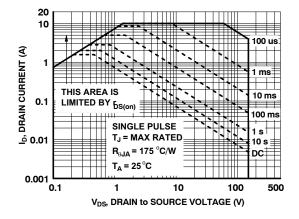
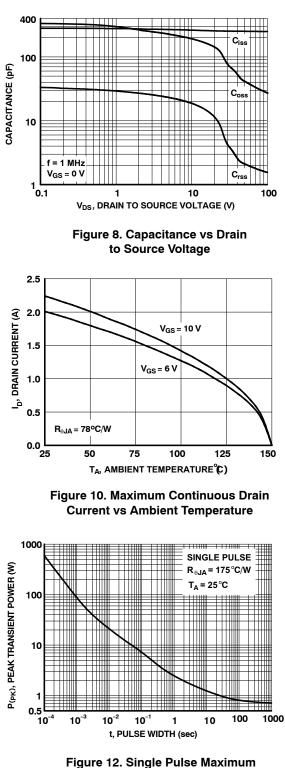



Figure 11. Forward Bias Safe Operating Area

Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted (continued)

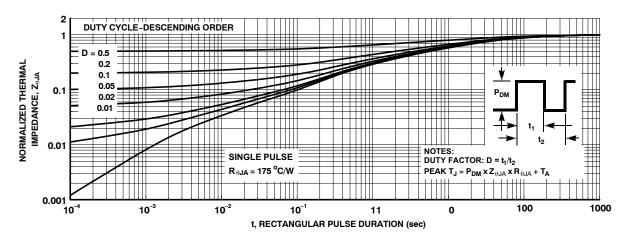
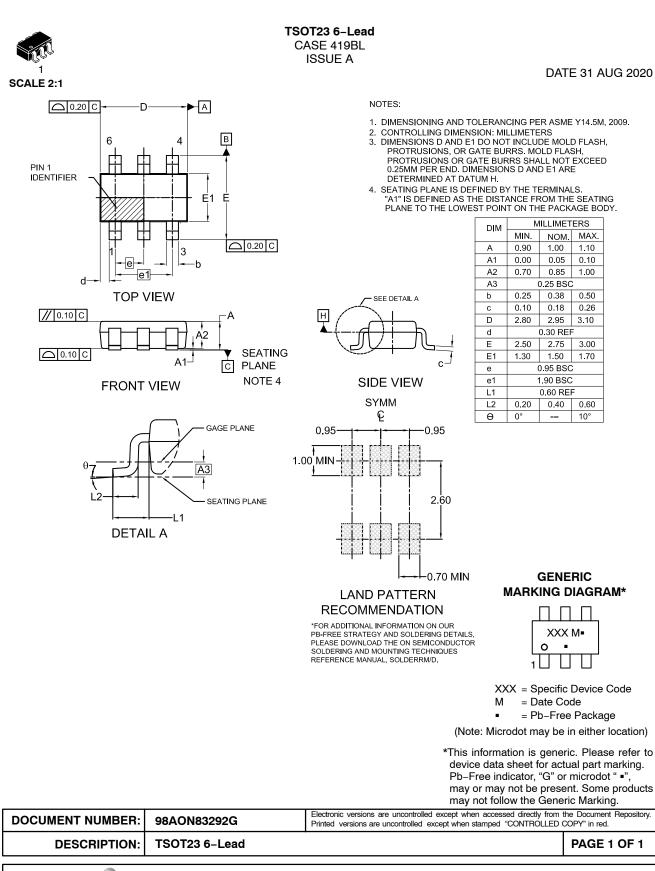



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B