

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]SEMICロNロபロTロロ®

FDD13AN06A0

N－Channel PowerTrench ${ }^{\circledR}$ MOSFET 60 V， 50 A， $13 \mathrm{~m} \Omega$

Features

－ $\mathrm{R}_{\mathrm{DS}(\text { on })}=11.5 \mathrm{~m} \Omega$（ Typ．）＠ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$
－$Q_{G(\text { tot })}=22 \mathrm{nC}($ Typ．$) @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
－Low Miller Charge
－Low Qrr Body Diode
－UIS Capability（Single Pulse and Repetitive Pulse）

Formerly developmental type 82555

Applications

－Consumer Appliances
－LED TV
－Synchronous Rectification
－Battery Protection Circuit
－Motor Drives and Uninterruptible Power Supplies

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	FDD13AN06A0	Unit
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage	60	V
V_{GS}	Gate to Source Voltage	± 20	V
I_{D}	Drain Current Continuous（ $\mathrm{T}_{\mathrm{C}}<80^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ ）	50	A
	Continuous（ $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\theta \mathrm{JA}}=52^{\circ} \mathrm{C} / \mathrm{W}\right)$	9.9	A
	Pulsed	Figure 4	A
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy（ Note 1）	56	mJ
$P_{\text {D }}$	Power dissipation	115	W
	Derate above $25^{\circ} \mathrm{C}$	0.77	W／${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature	－55 to 175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance Junction to Case，Max．D－PAK	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{θ}	Thermal Resistance Junction to Ambient，Max．D－PAK	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta J A}$	Thermal Resistance Junction to Ambient，Max．D－PAK， $1 \mathrm{in}^{2}$ copper pad area	52	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD13AN06A0	FDD13AN06A0	D-PAK	330 mm	16 mm	2500 units

Electrical Characteristics $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Off Characteristics						
B ${ }_{\text {VDSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	60	-	-	V
IDSS	Zero Gate Voltage Drain Current	$\begin{array}{ll} \begin{array}{ll} \mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \\ \hline \end{array} \\ \hline \end{array}$	-	-	1	$\mu \mathrm{A}$
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{G S}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	-	4	V
${ }^{\text {dSS(ON) }}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.0115	0.0135	Ω
		$\mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$	-	0.022	0.034	
		$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \mathrm{~V}_{\text {GS }}=10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	-	0.026	0.030	
Dynamic Characteristics						
$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	1350	-	pF
$\mathrm{CoSS}^{\text {O }}$	Output Capacitance		-	260	-	pF
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance		-	90	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V		22	29	nC
$\mathrm{Q}_{\mathrm{g} \text { (TH) }}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to $2 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}$	-	2.6	3.4	nC
Q_{gs}	Gate to Source Gate Charge	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	-	8.2	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau		-	5.6	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	6.4	-	nC

Switching Characteristics ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

t_{ON}	Turn-On Time	$\begin{aligned} & V_{D D}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=12 \Omega \end{aligned}$	-	-	130	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	9	-	ns
t_{r}	Rise Time		-	77	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		-	26	-	ns
t_{f}	Fall Time		-	25	-	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time		-	-	77	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=50 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=25 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=50 \mathrm{~A}, \mathrm{dI}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	24	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=50 \mathrm{~A}, \mathrm{dI}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	15	nC

Notes:
1: Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=45 \mu \mathrm{H}, \mathrm{I}_{\mathrm{AS}}=50 \mathrm{~A}$.

Typical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Drain to Source On Resistance vs Drain Current

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 17. Gate Charge Test Circuit

Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 18. Gate Charge Waveforms

Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that $T_{J M}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of $P_{D M}$ is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta J A}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3 . Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$
\begin{array}{rr}
R_{\theta J A}=33.32+\frac{23.84}{(0.268+\text { Area })} & \text { (EQ. 2) } \\
R_{\theta J A}=33.32+\frac{154}{(1.73+\text { Area })} & \text { Area in Inches Squared } \\
& \text { (EQ. 3) } \tag{EQ.3}
\end{array}
$$

AREA, TOP COPPER AREA $\mathrm{in}^{2}\left(\mathrm{~cm}^{2}\right)$
Figure 21. Thermal Resistance vs Mounting Pad Area

PSPICE Electrical Model

.SUBCKT FDD13AN06A0 213 ; rev August 2002
Ca $1285.1 \mathrm{e}-10$
Cb 1514 5.8e-10
Cin 68 1.3e-9

Dbody 75 DbodyMOD
Dbreak 511 DbreakMOD
Dplcap 105 DplcapMOD
Ebreak 117171865.40
Eds 148581
Egs 138681
Esg 610681
Evthres 6211981
Evtemp 20618221
It 8171
Lgate $195.2 \mathrm{e}-9$
Ldrain 25 1.0e-9
Lsource 37 2.14e-9
RLgate 1952
RLdrain 2510
RLsource 3721.4
Mmed 16688 MmedMOD
Mstro 16688 MstroMOD
Mweak 162188 MweakMOD
Rbreak 1718 RbreakMOD 1
Rdrain 5016 RdrainMOD 3.1e-3
Rgate 9203.71

RSLC1 551 RSLCMOD 1e-6
RSLC2 550 1e3
Rsource 87 RsourceMOD 5.5e-3
Rvthres 228 RvthresMOD 1
Rvtemp 1819 RvtempMOD 1
S1a 612138 S1AMOD
S1b 1312138 S1BMOD
S2a 6151413 S2AMOD
S2b 13151413 S2BMOD
Vbat 2219 DC 1
ESLC 5150 VALUE=\{(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*160),6)) \}
.MODEL DbodyMOD D (IS=1.0E-11 N=1.08 RS=3.5e-3 TRS1=2.2e-3 TRS2=2.5e-9

+ CJO=.9e-9 M=5.1e-1 TT=1e-9 XTI=3.9)
.MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=4.1e-10 IS=1e-30 N=10 M=0.45)
MODEL MmedMOD NMOS (VTO $=3.5 \mathrm{KP}=6 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=3.71$)
.MODEL MstroMOD NMOS (VTO=4.3 KP=50 IS=1e-30 N=10 TOX=1 L=1u W=1u)
MODEL MweakMOD NMOS (VTO=2.91 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.71e+1 RS=0.1)
.MODEL RbreakMOD RES (TC1=9e-4 TC2=-5e-7)
MODEL RdrainMOD RES (TC1=1.3e-2 TC2=5.2e-5)
MODEL RSLCMOD RES (TC1=1.8e-3 TC2=1.7e-5)
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.0e-5)
.MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-2)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-5)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=.5)
MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=.5 VOFF=-1.5)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

rev August 2002
template FDD13AN06A0 n2,n1,n3
electrical n2, n1, n3
\{
var i iscl
dp.. model dbodymod $=($ isl $=1.0 \mathrm{e}-11, \mathrm{nl}=1.08, \mathrm{rs}=3.5 \mathrm{e}-3, \operatorname{trs} 1=2.2 \mathrm{e}-3, \operatorname{trs} 2=2.5 \mathrm{e}-9, \mathrm{cjo}=.9 \mathrm{e}-9, \mathrm{~m}=5.1 \mathrm{e}-1, \mathrm{tt}=1 \mathrm{e}-9, \mathrm{xti}=3.9)$
dp..model dbreakmod $=(r s=1.5 \mathrm{e}-1$, trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod $=(\mathrm{cjo}=4.1 \mathrm{e}-10$, isl $=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.45)$
m..model mmedmod $=\left(\right.$ type $=_n, v t o=3.5, k p=6$, is $=1 e-30$, tox $\left.=1\right)$
m..model mstrongmod $=$ (type $=_n$, vto $=4.3, \mathrm{kp}=50$, is $=1 \mathrm{e}-30$, tox $=1$)
m..model mweakmod $=\left(\right.$ type $=_\bar{n}, \mathrm{vto}=2.91, \mathrm{kp}=0.05$, is $=1 \mathrm{e}-30$, tox $=1, \mathrm{rs}=0.1$)
sw_vcsp..model s1amod $=($ ron=1e-5,roff $=0.1$, von $=-5$, voff $=-2)$
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2, voff=-5) sw_vcsp..model s2amod $=$ (ron=1e-5,roff=0.1,von=-1.5,voff=.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=.5,voff=-1.5) c.ca n12 n8 = 5.1e-10 c.cb n15 n14 $=5.8 \mathrm{e}-10$ c.cin $n 6 \mathrm{n} 8=1.3 \mathrm{e}-9$
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 $=65.40$
spe.eds n14 n8 n5 n8 = 1
spe.egs $n 13 n 8 n 6 n 8=1$
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
I.Igate n1 n9 $=5.2 \mathrm{e}-9$
I.Idrain n2 n5 = 1.0e-9
I.Isource n3 n7 $=2.14 \mathrm{e}-9$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=52$
res.rldrain n2 n5 $=10$
res.rlsource n3 n7 $=21.4$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$

res.rbreak n17 n18 = 1, tc1 $=9 \mathrm{e}-4$, tc $2=-5 \mathrm{e}-7$
res.rdrain n50 n16 $=3.1 \mathrm{e}-3$, tc1 $=1.3 \mathrm{e}-2, \mathrm{tc} 2=5.2 \mathrm{e}-5$
res.rgate $\mathrm{n} 9 \mathrm{n} 20=3.71$
res.rslc1 n5 n51 $=1 \mathrm{e}-6$, tc1 $=1.8 \mathrm{e}-3, \mathrm{tc} 2=1.7 \mathrm{e}-5$
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 $=5.5 \mathrm{e}-3, \mathrm{tc} 1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvthres n22 n8 = 1, tc $1=-5.3 \mathrm{e}-3, \mathrm{tc} 2=-1.0 \mathrm{e}-5$
res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $v(n 51, n 50)=\left((v(n 5, n 51) /(1 e-9+a b s(v(n 5, n 51))))^{*}\left((a b s(v(n 5, n 51) * 1 e 6 / 160))^{* *} 6\right)\right)$
\}\}

SPICE Thermal ModeI

REV 22 August 2002
FDD13AN06A0T
CTHERM1 TH 6 9.7e-4
CTHERM2 65 6.2e-3
CTHERM3 54 4.6e-3
CTHERM4 43 4.9e-3
CTHERM5 32 8e-3
CTHERM6 2 TL 4.2e-2

RTHERM1 TH $65.24 \mathrm{e}-2$
RTHERM2 65 10.08e-2
RTHERM3 54 4.28e-1
RTHERM4 43 1.8e-1
RTHERM5 32 1.9e-1
RTHERM6 2 TL 2.1e-1

SABER Thermal Model

SABER thermal model FDD13AN06A0T template thermal_model th tl thermal_c th, tl
\{
ctherm.ctherm1 th $6=9.7 \mathrm{e}-4$ ctherm.ctherm2 $65=6.2 \mathrm{e}-3$ ctherm.ctherm3 $54=4.6 \mathrm{e}-3$ ctherm.ctherm4 $43=4.9 \mathrm{e}-3$
ctherm.ctherm5 $32=8 \mathrm{e}-3$ ctherm.ctherm6 $2 \mathrm{tl}=4.2 \mathrm{e}-2$
rtherm.rtherm1 th $6=5.24 \mathrm{e}-2$
rtherm.rtherm2 $65=10.08 \mathrm{e}-2$
rtherm.rtherm3 $54=4.28 \mathrm{e}-1$
rtherm.rtherm4 $43=1.8 \mathrm{e}-1$ rtherm.rtherm5 $32=1.9 \mathrm{e}-1$ rtherm.rtherm6 $2 \mathrm{tl}=2.1 \mathrm{e}-1$ \}

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA.
B) ALL DIMENSIONS ARE IN MILLIMETERS
C) DIMENSIONING AND TOLERANCING PER

ASME Y14.5M-2009.
D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION.
E). TRIMMED METAL CENTER LEAD IS PRESENT ON FOR NON-DIODE PRODUCTS
F) DIMENSIONS ARE EXCLUSIVE OF BURS,

MOLD FLASH AND TIE BAR EXTRUSIONS.
G) LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N
H) DRAWING NUMBER AND REVISION: MKT-TO252A03REV11

DETAIL A
(ROTATED - 90°) SCALE: 12X

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

