ON Semiconductor

Is Now

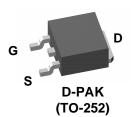
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

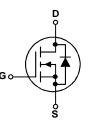
ON Semiconductor®

FDD3690


100V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

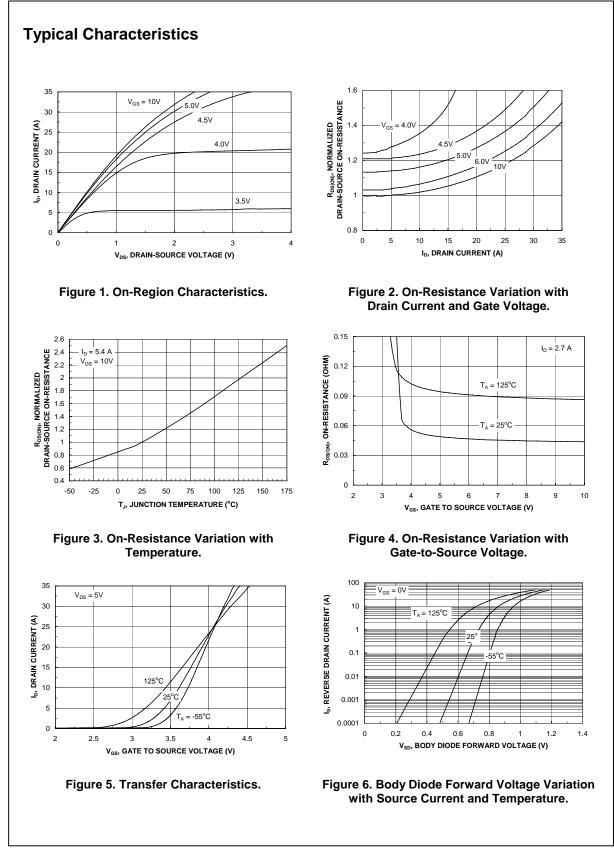

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

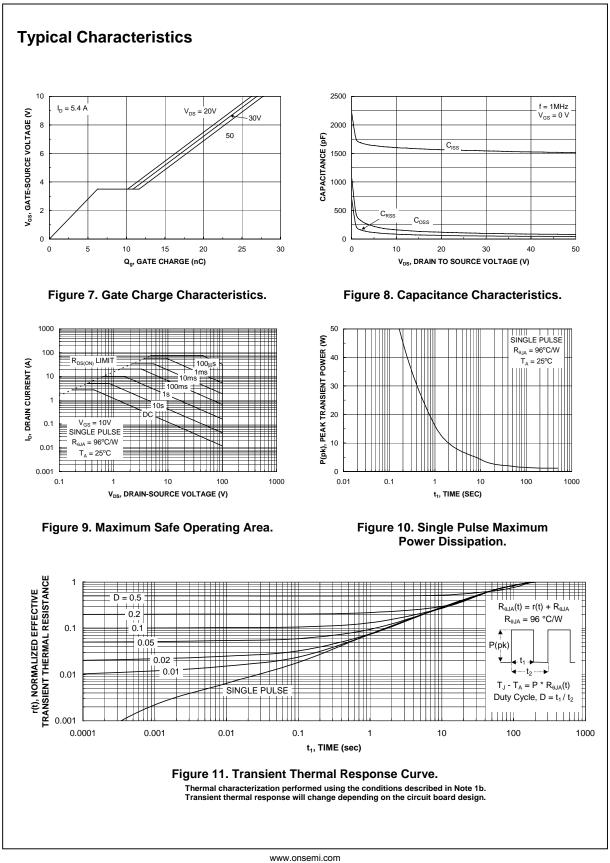
Features

- 22 A, 100 V. $R_{DS(ON)} = 64 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 71 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Low gate charge (28nC typical)
- Fast Switching
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted


Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage	Drain-Source Voltage		100	V	
V _{GSS}	Gate-Source Voltage			±20	V	
ID	Continuous Drain Cur	Continuous Drain Current @T _C =25°C (Note 3)			А	
		Pulsed	(Note 1a)	75		
PD	Power Dissipation	@T _c =25°C	(Note 3)	60	W	
		@T _A =25°C	(Note 1a)	3.8		
		@T _A =25°C	(Note 1b)	1.6		
T _J , T _{STG}	Operating and Storag	e Junction Tempera	ature Range	-55 to +175	°C	
Therma	I Characteristic	cs				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Cas		(Note 1)	2.5	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Not		(Note 1a)	40	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1b)		(Note 1b)	96 °C		
Packag	e Marking and	Ordering Inf	ormation			
Device N		V	el Size	Tape width	Quantity	
FDD3	3690 FDD	3690	13"	16mm	2500 units	

 $\ensuremath{\mathbb{C}}$ 2001 Semiconductor Components Industries, LLC. October-2017, Rev. 2


Publication Order Number: FDD3690/D

Drain-Source Avalanche Ratings (Note 2) Woss Ningle Pulse Drain-Source Vos = 50 V. In = 5.4 Å 17.5 mJ Are Maximum Drain-Source Avalanche Source Avalanche 100 V V BYoss Drain-Source Breakdown Voltage Vos = 0 V. In = 250 µA. 100 V BYoss Drain-Source Breakdown Voltage Vos = 0 V. In = 250 µA. 100 V Byoss Drain-Source Breakdown Voltage Vos = 20 µA. Referenced to 25° C 78 mV/r0 Arge Current Vos = 20 µA. Referenced to 25° C 78 mV/r0 Operations Gate Threshold Voltage Vos = 20 µA. Vos = 0 V 100 nA Outcom Gate Threshold Voltage Vos = 20 µA. Vos = 0 V -100 nA Order Gate Threshold Voltage Vos = 6 V. In = 5.4 A Vos = 0 V -100 nA Outcom Gate Threshold Voltage Vos = 6 V. In = 5.4 A 20 A 71 Maskinue Coefficient Vos = 6 V. In = 5.4 A 20 A 71 71 <t< th=""><th>Symbol</th><th>Parameter</th><th>Test Conditions</th><th>Min</th><th>Тур</th><th>Max</th><th>Units</th></t<>	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Woss Single Pulse Drain-Source V ₂₀ = 50 V, I ₀ = 5.4 A 175 mJ J _{AR} Maximum Drain-Source Avalanche 5.4 A Off Characteristics Summer Source Breakdown Voltage V ₀₀ = 0 V, I ₀ = 250 µA 100 V BV ₀₀₅ Drain-Source Breakdown Voltage V ₀₀ = 0 V, I ₀ = 250 µA, Referenced to 25°C 78 mV/°C Coefficient V ₀₀₅ = 0 V, V ₀₀₅ = 0 V 100 A Iggst Gate Abody Leakage, Forward V ₀₅ = -20 V, V ₀₅ = 0 V 100 A Iggst Gate Threshold Voltage V ₀₅ = -20 V, V ₀₅ = 0 V -100 A Voltage V ₀₅ = -20 V, V ₀₅ = 0 V -100 A Iggst Gate Threshold Voltage V ₀₅ = -20 V, V ₀₅ = 0 V -000 A Voltage V ₀₅ = 0 V, Ip = 5.4 A V ₀₅ = 0 V -6.2 mV/°C AT_1 Temperature Coefficient Ip = 5.2 A 47 71 mu Voltage Temperature Coefficient V ₀₅ = 50 V,	-	burce Avalanche Ratings (Not	l e 2)	1			
Image Maximum Drain-Source Avalanche 5.4 A Off Characteristics BV _{O36} Drain-Source Breakdown Voltage V _{O5} = 0 V, I _D = 250 µA, Referenced to 25°C 78 m/V/C ABVoss Breakdown Voltage Temperature Ib = 250 µA, Referenced to 25°C 78 m/V/C Iosa Zero Gate Voltage Drain Current V _{O8} = 0 V, V _{O8} = 0 V 100 µA Iquess Gate-Body Leakage, Forward V _{O8} = 20 V, V _{O8} = 0 V 100 µA Iquess Gate-Body Leakage, Reverse V _{O8} = 0.20 V, V _{O8} = 0 V 100 µA Iquess Gate Threshold Voltage V _{O8} = 0.20 V, V _{O8} = 0 V -1000 µA Masse Gate Threshold Voltage V _{O8} = 0.20 V, V _{O8} = 0 V 2 2.4 4 V Masse Gate Threshold Voltage V _{O8} = 10 V, I _D = 5.4 A 2 2.4 4 M Masse Gate Threshold Voltage V _{O8} = 10 V, I _D = 5.4 A, T ₁ = 125°C 88 135 1000° N 20 A 35 1000° A 35 100° 20 S		Single Pulse Drain-Source				175	mJ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{AR}	Maximum Drain-Source Avalanche				5.4	A
BV _{DSS} Drain–Source Breakdown Voltage V _{os} = 0 V, I _o = 250 μA 100 V ΔBV _{DSS} Breakdown Voltage Temperature I _o = 250 μA, Referenced to 25°C 78 mV/*0 Δgss Zero Gate Voltage Drain Current V _{DS} = 80 V, V _{OS} = 0 V 10 μA Loss Gate–Body Leakage, Forward V _{SS} = 20 V, V _{OS} = 0 V 100 nA Loss Gate–Body Leakage, Forward V _{SS} = 20 V, V _{OS} = 0 V 100 nA Mostion Gate–Body Leakage, Forward V _{SS} = 20 V, V _{OS} = 0 V 100 nA Mostion Gate Gate-Body Leakage, Forward V _{SS} = 20 V, V _{OS} = 0 V 100 nA Mostion Gate Threshold Voltage V _{DS} = V _{OS} + 10 = 250 μA 2 2.4 4 V Massing Gate Threshold Voltage Io = 250 μA, Referenced to 25°C -6.2 mV/*0 -7 -7 mV/*0 Alg Jo = 10 V, Io = 5.4 A, T _J = 125°C 47 71 mV/*0 -7 135 -7 -7 88 135 -7 -7 -7 151	Off Char	acteristics		L			
ΔBVoss ΔT_ Breakdown Voltage Temperature Coefficient I _b = 250 µA, Referenced to 25°C 78 mV/40 Juss Coefficient Vos 80 V, Vos 0 10 µA Juss Gate-Body Leakage, Forward Vos 80 V, Vos 0 100 µA Juss Gate-Body Leakage, Forward Vos 20 V, Vos 0 100 µA Vos Qas O Vos 0 100 µA Vos Vos Vos Vos 0 100 µA Vos Vos Vos Vos Vos 0 100 µA Vos Gate Threshold Voltage Vos Vos 10 2 2.4 4 V Vos 10 Vos 10 2.5.4.A 44 46 47 71 mΩ Mos 10.1 Vos 5.4.A 1.2 2.0 A 88 135 100 20 S <t< td=""><td></td><td></td><td>$V_{GS} = 0 V$, $I_D = 250 \mu A$</td><td>100</td><td></td><td></td><td>V</td></t<>			$V_{GS} = 0 V$, $I_D = 250 \mu A$	100			V
ΔT _μ Coefficient Image of the set of th		•			78		mV/°C
lassr Gate-Body Leakage, Forward $V_{GS} = 20$ V, $V_{DS} = 0$ V Image: Constraint of the state o	ΔT_{J}						
Issak Gate-Body Leakage, Reverse V _{GS} = -20 V V _{DS} = 0 V -100 nA On Characteristics (Note 2) Vosimi Gate Threshold Voltage V _{DS} = V _{DS} , Ip = 250 µA 2 2.4 4 V MVGSIMI Gate Threshold Voltage Ip = 250 µA, Referenced to 25°C -6.2 mV/r0 AT_ Temperature Coefficient Ip = 25.0 µA, Referenced to 25°C -6.2 mV/r0 Ros(on) Static Drain-Source Vos = 10 V, Ip = 5.4 A, TJ = 125°C 47 71 More On-Resistance Vos = 10 V, Ip = 5.4 A, TJ = 125°C 48 135 Incerv Vos = 10 V, Ip = 5.4 A, TJ = 125°C 88 135 Support Characteristics Vos = 5 V, Ip = 5.4 A 20 A Grs Input Capacitance VDs = 5 V, Ip = 5.4 A 20 A Grs Num-On Delay Time VDs = 50 V, Vos = 0 V, Ip = 1 A, It 1 20 ns Static Drain Characteristics Note 2) Infu = 00 ns Infu = 00 ns Gate Turn-On Delay Time VDs = 50 V, Ig = 1 A, Vos = 10 V, Rgen = 6 Ω Is = 00 Is = 00 Is = 00 <td>I_{DSS}</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	I _{DSS}	-				-	
On Characteristics (Note 2) VGS(m) Gate Threshold Voltage $V_{DS} = V_{DS}$, $I_D = 250 \mu A$ 2 2.4 4 V $\Delta V_{GS(m)}$ Gate Threshold Voltage $I_D = 250 \mu A$, Referenced to 25°C -6.2 mV/PC ΔT_J Temperature Coefficient $I_D = 5.4 A$ 44 64 mV/PC $Br(s)$ Static Drain Source $V_{GS} = 10 V$, $I_D = 5.4 A$, $T_J = 125°C$ 88 135 $I_D(em)$ On-State Drain Current $V_{GS} = 10 V$, $V_{DS} = 5 V$ 20 A grs Forward Transconductance $V_{DS} = 5 V$, $I_D = 5.4 A$ 20 S Dynamic Characteristics $V_{DS} = 50 V$, $V_{DS} = 50 V$, $I_D = 5.4 A$ 20 S Dynamic Characteristics I_{44} pF Switching Characteristics (Note 2) I_{44} pF $V_{DS} = 50 V$, $I_D = 1A$, $V_{CS} = 0 V$, $I_D = 1A$, I_T <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Vasimi Vasimi QuestionGate Threshold Voltage Threshold Voltage AT_JVDS Fermerature CoefficientVDS LD LD LD LDVDS LD LD LDVDS 	GSSR	Gate–Body Leakage, Reverse	$V_{GS} = -20 \text{ V} \qquad V_{DS} = 0 \text{ V}$			-100	nA
		acteristics (Note 2)	1		1	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5		2		4	
VGB = 10 V, ID = 5.4 A, TJ = 125°C88135Indem)On-State Drain CurrentVGB = 10 V, VGB = 5 V20AgrsForward TransconductanceVDB = 5 V, ID = 5.4 A20SDynamic CharacteristicsConstanceVDB = 50 V, VGB = 0 V, ID = 5.4 A20SOutput CapacitanceVDB = 50 V, VGB = 0 V, ID = 5.4 A20SDynamic CharacteristicsOutput CapacitanceVDB = 50 V, VGB = 0 V, ID HHZSwitching Characteristics (Note 2)Turm-On Delay Timeta(on)Turm-On Delay TimeVDD = 50 V, ID = 1 A,1120nsta(on)Turm-Off Belay TimeVGB = 10 V, RGEN = 6 Ω6.515nsta(eff)Turm-Off Fall TimeVGB = 50 V, ID = 5.4 A,2839nCQgTotal Gate ChargeVDB = 50 V, ID = 5.4 A,2839nCQgaGate-Source ChargeVGB = 10 V6.2nCQgaGate-Drain ChargeVGB = 10 V6.2nCDgadGate-Drain ChargeVGB = 0 V, ID = 5.4 A,200.731.2VsbDrain-Source Diode Characteristics and Maximum RatingsIsMaximum Continuous Drain-Source Diode Forward Current3.2AVsbDrain-Source Diode Forward VoltageVGB = 0 V, ID = 3.2 A(Note 2)0.731.2VsbDrain-Source Diode Forward VoltageVGB = 0 V, ID = 3.2 ANote 2)0.73 </td <td></td> <td>5</td> <td>·</td> <td></td> <td>-6.2</td> <td></td> <td>mV/°C</td>		5	·		-6.2		mV/°C
VGB = 10 V, ID = 5.4 A, TJ = 125°C88135Indem)On-State Drain CurrentVGB = 10 V, VGB = 5 V20AgrsForward TransconductanceVDB = 5 V, ID = 5.4 A20SDynamic CharacteristicsConstanceVDB = 50 V, VGB = 0 V, ID = 5.4 A20SOutput CapacitanceVDB = 50 V, VGB = 0 V, ID = 5.4 A20SDynamic CharacteristicsOutput CapacitanceVDB = 50 V, VGB = 0 V, ID HHZSwitching Characteristics (Note 2)Turm-On Delay Timeta(on)Turm-On Delay TimeVDD = 50 V, ID = 1 A,1120nsta(on)Turm-Off Belay TimeVGB = 10 V, RGEN = 6 Ω6.515nsta(eff)Turm-Off Fall TimeVGB = 50 V, ID = 5.4 A,2839nCQgTotal Gate ChargeVDB = 50 V, ID = 5.4 A,2839nCQgaGate-Source ChargeVGB = 10 V6.2nCQgaGate-Drain ChargeVGB = 10 V6.2nCDgadGate-Drain ChargeVGB = 0 V, ID = 5.4 A,200.731.2VsbDrain-Source Diode Characteristics and Maximum RatingsIsMaximum Continuous Drain-Source Diode Forward Current3.2AVsbDrain-Source Diode Forward VoltageVGB = 0 V, ID = 3.2 A(Note 2)0.731.2VsbDrain-Source Diode Forward VoltageVGB = 0 V, ID = 3.2 ANote 2)0.73 </td <td>R_{DS(on)}</td> <td></td> <td>$V_{GS} = 10 V, I_D = 5.4 A$</td> <td></td> <td></td> <td>-</td> <td>mΩ</td>	R _{DS(on)}		$V_{GS} = 10 V, I_D = 5.4 A$			-	mΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		On-Resistance					
g_{FS} Forward Transconductance $V_{DS} = 5 V$, $I_D = 5.4 A$ 20SDynamic Characteristics C_{ISS} Input Capacitance $V_{DS} = 50 V$, $V_{GS} = 0 V$, $I = 1.0 MHz$ $I = 1.0 MHz$ $B22$ pF C_{OSS} Output Capacitance $f = 1.0 MHz$ $B22$ pF $B22$ pF C_{ISS} Reverse Transfer Capacitance $V_{DD} = 50 V$, $I_D = 1 A$, $I = 1.0 MHz$ $B22$ pF Switching Characteristics (Note 2) $V_{CS} = 10 V$, $R_{GEN} = 6 \Omega$ $I = 1.0 MHz$ $I = 29$ $I = 0.5 M$ I_{cont} Turn-On Delay Time $V_{DS} = 50 V$, $I_D = 1 A$, $I = 29$ $I = 0.5 M$ $I = 29$ $I = 0.5 M$ I_{cont} Turn-Off Delay Time $V_{DS} = 50 V$, $I_D = 5.4 A$, $I = 28$ $I = 0.5 M$ $I = 29$ $I = 0.5 M$ I_{adm} Turn-Off Fall Time $I = 0.0 M$ Q_g Total Gate Charge $V_{DS} = 50 V$, $I_D = 5.4 A$, $I = 0.0 M$ $I = 0.0 M$ $I = 0.0 M$ $I = 0.0 M$ Q_g Gate-Drain Charge $V_{DS} = 10 V$ $I_D = 5.4 A$, $I = 0.0 M$ $I = 0.0 M$ $I = 0.0 M$ Q_{gd} Gate-Drain Charge $V_{DS} = 0 V$, $I_S = 3.2 A$ (Note 2) $I = 0.7 3$ $I = 0.0 M$ V_{SD} Drain-Source Diode Characteristics and Maximum Ratings I_S Maximum Continuous Drain-Source Diode Forward Voltage $V_{OS} = 0 V$, $I_S = 3.2 A$ (Note 2) $I = 0.7 3$ $I = 0.0 M$ V_{SD} Is the sum of the junction-to-case and case-to-ambleint thermal resistance where the ca	I _{D(on)}	On-State Drain Current		20			Α
Ciss Input Capacitance $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$ 1514 pF Coss Output Capacitance $f = 1.0 \text{ MHz}$ 82 pF Switching Characteristics (Note 2) 444 pF Switching Characteristics (Note 2) 444 pF Switching Characteristics (Note 2) 444 pF Switching Characteristics (Note 2) 6.5 15 ns $t_q(on)$ Turn-On Rise Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.5 15 ns $t_q(on)$ Turn-Off Delay Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.2 10 20 ns $t_q(on)$ Turn-Off Fall Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.2 nC Q_g Gate-Drain Charge $V_{OS} = 10 \text{ V}$ 6.2 nC Q_{gd} Gate-Drain Charge $V_{SS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ $Note 2$ 0.73 1.2 V S_{gd} Maximum Continuous Drain-Source Diode Forward Current 3.2 A N_{SL} N_{SL} 0.733 1.2 V <t< td=""><td></td><td>Forward Transconductance</td><td></td><td></td><td>20</td><td></td><td>S</td></t<>		Forward Transconductance			20		S
Ciss Input Capacitance $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$ 1514 pF Coss Output Capacitance $f = 1.0 \text{ MHz}$ 82 pF Switching Characteristics (note 2) 444 pF t_d(on) Turn-On Delay Time $V_{DD} = 50 \text{ V}$, $I_D = 1 \text{ A}$, $V_{GS} = 6 \Omega$ 6.5 155 ns t_d(on) Turn-On Rise Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.5 15 ns t_d(on) Turn-Off Delay Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.5 15 ns t_d(on) Turn-Off Fall Time $V_{OS} = 50 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.2 nC Q_g Total Gate Charge $V_{OS} = 50 \text{ V}$, $I_D = 5.4 \text{ A}$, 28 39 nC 6.2 nC Q_{gd} Gate-Drain Charge $V_{OS} = 10 \text{ V}$ 6.2 nC D_{gd} Gate-Drain Charge $V_{SS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ $(Note 2)$ $0.73 1.2$ V V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ $(Note 2)$ $0.73 1.2$ V N_{SD} Drain-Source Diode Forward Quite e user's board design. <td>Dynamic</td> <td>Characteristics</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dynamic	Characteristics					
Coses Output Capacitance f = 1.0 MHz 82 pF Coses Reverse Transfer Capacitance 44 pF Switching Characteristics (Note 2) 444 pF talcon Turn-On Delay Time VDD = 50 V, ID = 1 A, ID = 1 A, ID = 1 A, ID = 1 A, ID = 10 D = 10 D, ID = 10			$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$		1514		pF
Cress Reverse Transfer Capacitance 44 pF Switching Characteristics (Note 2) t_d(m) Turn-On Delay Time VDD = 50 V, VDB = 6 Ω ID = 1 A, VDB = 6 Ω 11 20 ns t_r Turn-On Rise Time VDD = 50 V, RGEN = 6 Ω ID = 1 A, COM = 6.5 15 ns t_d(df) Turn-Off Delay Time VDB = 50 V, RGEN = 6 Ω 6.5 15 ns t_d(df) Turn-Off Fall Time VDB = 50 V, RGEN = 6 Ω ID = 5.4 A, COM = 28 29 60 ns Qg Total Gate Charge VDB = 50 V, RGEN = 6 Ω ID = 5.4 A, COM = 28 28 39 nC Qgs Gate-Drain Charge VDB = 50 V, RGEN = 6 Ω ID = 5.4 A, COM = 20 0.0 ns Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current 3.2 A Vsb Drain-Source Diode Forward Voltage VGB = 0 V, IS = 3.2 A Note 2) 0.73 1.2 V Maximum Continuous Drain-Source Diode Forward Voltage VGB = 0 V, IS = 3.2 A Note 2) 0.73 1.2 V Maximum Continuous Drain-Source Dio							<u> </u>
Switching Characteristics (Note 2) tar Turn-On Delay Time V_{DD} = 50 V, I_D = 1 A, 11 20 ns tr, Turn-On Rise Time V_{GS} = 10 V, R_{GEN} = 6 \Omega 6.5 15 ns tar Turn-Off Delay Time V_{GS} = 50 V, I_D = 1 A, 11 20 ns tar Turn-Off Delay Time V_{GS} = 10 V, R_{GEN} = 6 \Omega 6.5 15 ns Qg Total Gate Charge V_{DS} = 50 V, I_D = 5.4 A, 28 39 nC Qgd Gate-Drain Charge V_{GS} = 10 V I_D = 5.4 A, 2.8 39 nC Dggd Gate-Drain Charge V_{GS} = 0 V, I_D = 5.4 A, 2.8 39 nC Dggd Gate-Drain Charge V_GS = 10 V I_D = 5.4 A, 2.8 3.2 A Dggd Gate-Drain Charge V_GS = 0 V, I_S = 3.2 A Not 2) 0.73 1.2 V Base Maximum Continuous Drain-Source Diode Forward Voltage V_GS = 0 V, I_S = 3.2 A Not 2) 0.73 1.2 V State 1: 1 on letter size gaper </td <td></td> <td></td> <td></td> <td></td> <td>44</td> <td></td> <td><u> </u></td>					44		<u> </u>
td(on) Turn-On Delay Time $V_{DD} = 50 \text{ V}$, $I_D = 1 \text{ A}$, $V_{GS} = 10 \text{ V}$, $R_{GEN} = 6 \Omega$ 11 20 ns td(off) Turn-Off Delay Time V_{SS} = 10 \text{ V}, $R_{GEN} = 6 \Omega$ 6.5 15 ns t_d(off) Turn-Off Delay Time 10 20 ns t_t Turn-Off Fall Time 10 20 ns Q_g Total Gate Charge $V_{DS} = 50 \text{ V}$, $I_D = 5.4 \text{ A}$, $Q_{SS} = 10 \text{ V}$ 6.2 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.2 nC D_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.2 nC D_{gd} Gate-Drain Charge $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ (Note 2) 0.73 1.2 V Is Maximum Continuous Drain-Source Diode Forward Current 3.2 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ (Note 2) 0.73 1.2 V Is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. $R_{B_{2G}}$ is guaranteed by design while $R_{B_{2A}} = 40^{\circ}C/W$ when mounted on a minimum pad. b) $R_{B_{2A}} = 96^{\circ}C/W$ when mounted on a mi		· · ·					
tr Turn-On Rise Time $V_{GS} = 10 \text{ V}$, $R_{GEN} = 6 \Omega$ 6.5 15 ns t_d(off) Turn-Off Delay Time 10 20 ns t_t Turn-Off Fall Time 10 20 ns Q_g Total Gate Charge $V_{DS} = 50 \text{ V}$, $I_D = 5.4 \text{ A}$, 28 39 nC Q_{gd} Gate-Source Charge $V_{GS} = 10 \text{ V}$ $I_D = 5.4 \text{ A}$, 28 39 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $I_D = 5.4 \text{ A}$, 28 39 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $I_D = 5.4 \text{ A}$, 28 39 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $I_D = 5.4 \text{ A}$, 28 39 nC Drain-Source Diode Characteristics and Maximum Ratings I_S $Maximum$ Continuous Drain-Source Diode Forward Current 3.2 A N_{SD} $0.73 1.2 \text{ V}$ Nsb Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ (Note 2) $0.73 1.2 \text{ V}$ Image: R_{GA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case t			$V_{re} = 50 V$ $I_{re} = 1.4$		11	20	ns
Turn-Off Delay Time 29 60 ns t_{t} Turn-Off Fall Time 10 20 ns Q_{g} Total Gate Charge $V_{DS} = 50 \text{ V}$, $I_{D} = 5.4 \text{ A}$, 28 39 nC Q_{gd} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 6.2 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.2 nC Drain-Source Diode Characteristics and Maximum Ratings Is Maximum Continuous Drain-Source Diode Forward Current 3.2 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ (Note 2) 0.73 1.2 V the a) $R_{BJA} = 40^{\circ}$ C/W when mounted on a $1in^2$ pad of 2 oz copper b) $R_{BJA} = 96^{\circ}$ C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper b) $R_{BJA} = 96^{\circ}$ C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper			$V_{\text{DD}} = 30 \text{ V}, \qquad \text{ID} = 1 \text{ A}, \qquad V_{\text{GS}} = 10 \text{ V}, \qquad \text{R}_{\text{GEN}} = 6 \Omega$				
Image: Construct of the second se						-	-
Q_g Total Gate Charge $V_{DS} = 50 \text{ V},$ $I_D = 5.4 \text{ A},$ 28 39 nC Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 6.2 nC Q_{gd} Gate-Drain Charge 5.4 nC Drain-Source Diode Characteristics and Maximum Ratings I_S Maximum Continuous Drain-Source Diode Forward Current 3.2 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V},$ $I_S = 3.2 \text{ A}$ (Note 2) 0.73 1.2 V others: R_{gA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R_{gJC} is guaranteed by design while R_{eCA} is determined by the user's board design. b) $R_{gJA} = 96^{\circ}C/W$ when mounted on a $1n^2$ pad of 2 oz copper case 1 : 1 on letter size paper Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%		,			10	20	ns
Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 6.2 nC Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 6.2 nC Drain-Source Diode Characteristics and Maximum Ratings Is Maximum Continuous Drain-Source Diode Forward Current 3.2 A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_S = 3.2 \text{ A}$ (Note 2) 0.73 1.2 V othes: R_{gJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R_{gJA} is guaranteed by design while R_{gCA} is determined by the user's board design. b) $R_{gJA} = 96^{\circ}$ C/W when mounted on a $11n^2$ pad of 2 oz copper b) $R_{gJA} = 96^{\circ}$ C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%		Total Gate Charge	$V_{DS} = 50 \text{ V}, \qquad I_D = 5.4 \text{ A},$				
Q _{gd} Gate-Drain Charge 5.4 nC Drain-Source Diode Characteristics and Maximum Ratings Is Maximum Continuous Drain-Source Diode Forward Current 3.2 A V _{SD} Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _S = 3.2 A (Note 2) 0.73 1.2 V Otes: R _{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R _{8JC} is guaranteed by design while R _{8CA} is determined by the user's board design. b) R _{8JA} = 96°C/W when mounted on a 1in ² pad of 2 oz copper b) R _{8JA} = 96°C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper		-			6.2		nC
Is Maximum Continuous Drain–Source Diode Forward Current 3.2 A Vsb Drain–Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 3.2 A$ (Note 2) 0.73 1.2 V Otes: R _{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R _{6JC} is guaranteed by design while R _{6CA} is determined by the user's board design. b) R _{8JA} = 96°C/W when mounted on a 1in ² pad of 2 oz copper b) R _{8JA} = 96°C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper		Gate–Drain Charge			5.4		nC
Is Maximum Continuous Drain–Source Diode Forward Current 3.2 A Vsb Drain–Source Diode Forward Voltage V _{GS} = 0 V, I _S = 3.2 A (Note 2) 0.73 1.2 V otes: R _{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R _{0JC} is guaranteed by design while R _{0CA} is determined by the user's board design. b) R _{0JA} = 96°C/W when mounted on a 1in ² pad of 2 oz copper b) R _{0JA} = 96°C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper	Drain_S	ource Diode Characteristics	and Maximum Ratings	1	1	1	1
Vsb Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _S = 3.2 A (Note 2) 0.73 1.2 V otes: R_{eJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface the drain pins. R_{eJC} is guaranteed by design while R_{eCA} is determined by the user's board design. b) $R_{aJA} = 96^{\circ}$ C/W when mounted on a 1 in ² pad of 2 oz copper b) $R_{aJA} = 96^{\circ}$ C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper						3.2	А
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%	-				0.73		
_ P _D	the drain pins.	R _{0JC} is guaranteed by design while R _{0CA} is deter a) R _{0JA} = 40°C/ 1in ² pad of 2 lse Width < 300 μ s, Duty Cycle < 2.0%	when mounted on a	b) R _{0J} A	(= 96°C/W	when mou	
Maximum current is calculated as: $\sqrt{R_{DS(ON)}}$ where P _D is maximum power dissipation at T _c = 25°C and R _{DS(ON)} is at T _{J(max)} and V _{GS} = 10V. Package current limitation is 21A	Maximum curr	rent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					

FDD3690

FDD3690

FDD3690

4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B