MOSFET - N-Channel, UniFET ${ }^{\text {m }}$
 500 V, 48 A, 105 m Ω

FDH50N50, FDA50N50

Description

UniFET MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- $\mathrm{R}_{\mathrm{DS}(\text { on })}=89 \mathrm{~m} \Omega$ (Typ.) @ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=24 \mathrm{~A}$
- Low Gate Charge (Typ. 105 nC)
- Low Crss (Typ. 45 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Applications

- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathbf{V}_{\mathbf{D S}}$	$\mathbf{R}_{\mathbf{D S}(\mathbf{O N})}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
500 V	$105 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	48 A

N-CHANNEL MOSFET

MARKING DIAGRAM

\$Y \& Z

FDH50N50,
FDA50N50
= Specific Device Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	FDH50N50-F133/ FDA50N50	Unit
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage	500	V
I_{D}	Drain Current - -Continuous ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) -Continuous ($\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$)	$\begin{gathered} \hline 48 \\ 30.8 \end{gathered}$	$\begin{aligned} & \hline A \\ & A \end{aligned}$
IDM	Drain Current -Pulsed (Note 1)	192	A
$\mathrm{V}_{\text {GSS }}$	Gate-Source Voltage	± 20	V
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy (Note 2)	1868	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current (Note 1)	48	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy (Note 1)	62.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	20	V/ns
P_{D}		$\begin{gathered} 625 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Second	300	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. $\mathrm{L}=1.46 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=48 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{SD}} \leq 48 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mathrm{us}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV}_{\mathrm{DSS}}$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Package Method	Reel Size	Tape Width	Quantity
FDH50N50-F133	FDH50N50	TO-247-3	Tube	N/A	N/A	30 Units
FDA50N50	FDA50N50	TO-3PN	Tube	N/A	N/A	30 Units

THERMAL CHARACTERISTICS

Symbol	Parameter	FDH50N50-F133/ FDA50N50	Unit
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction to Case, Max.	0.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient, Max.	40	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
OFF CHARACTERISTICS						
BV ${ }_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	500	-	-	V
$\begin{gathered} \Delta \mathrm{BV}_{\mathrm{DSs}} \\ / \Delta \mathrm{T}_{\mathrm{J}} \end{gathered}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	0.5	-	V/ ${ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	25	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
IGSSF	Gate-Body Leakage Current, Forward	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	-100	nA

ON CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3.0	-	5.0
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=24 \mathrm{~A}$	-	0.089	0.105
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=48 \mathrm{~A}$	Ω		

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	4979	6460	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	760	1000	pF
Crss	Reverse Transfer Capacitance		-	50	65	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	161	-	pF
$\mathrm{C}_{\text {oss }}$ (eff.)	Effective Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$ to $400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	342	-	pF

SWITCHING CHARACTERISTICS

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=48 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega \\ & \text { (Note 4) } \end{aligned}$	-	105	220	ns
t_{r}	Turn-On Rise Time		-	360	730	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	225	460	ns
t_{f}	Turn-Off Fall Time		-	230	470	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=48 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & (\text { Note } 4) \end{aligned}$	-	105	137	nC
Q_{gs}	Gate-Source Charge		-	33	-	nC
Q_{gd}	Gate-Drain Charge		-	45	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I_{S}	Maximum Continuous Drain-Source Diode Forward Current	-	-	48	A	
I_{SM}	Maximum Pulsed Drain-Source Diode Forward Current	-	-	192	A	
$\mathrm{~V}_{\mathrm{SD}}$	Source to Drain Diode Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=48 \mathrm{~A}$	-	-	1.4	V
t_{rr}	Reverse Recovery Time	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=48 \mathrm{~A}$, $\mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	580	-	ns
Q_{rr}	Reverse Recovery Charge		-	10	-	$\mu \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Essentially Independent of Operating Temperature Typical Characteristics.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Drain Current
vs. Case Temperature

Figure 12. Typical Drain-Source Voltage Slope
vs. Gate Resistance

Figure 13. Typical Switching Losses vs. Gate Resistance

Figure 14. Unclamped Inductive Switching Capability

Figure 15. Transient Thermal Resistance Curve

Figure 16. Gate Charge Test Circuit \& Waveform

Figure 17. Resistive Switching Test Circuit \& Waveforms

Figure 18. Unclamped Inductive Switching Test Circuit \& Waveforms

Figure 19. Peak Diode Recovery dv/dt Test Circuit \& Waveforms

| DOCUMENT NUMBER: | 98AON13862G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-3P-3LD / EIAJ SC-65, ISOLATED | PAGE 1 OF 1 |

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

