Small Signal Diode

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
ORDERING INFORMATION

Part Number	Marking	Package	Packing Method
1N914	914	DO-204AH (DO-35)	Bulk
1N914-T50A	914	DO-204AH (DO-35)	Ammo
1N914TR	914	DO-204AH (DO-35)	Tape and Reel
1N914ATR	914A	DO-204AH (DO-35)	Tape and Reel
1N914B	914B	DO-204AH (DO-35)	Bulk
1N914BTR	914B	DO-204AH (DO-35)	Tape and Reel
1N916	916	DO-204AH (DO-35)	Bulk
1N916A	916A	DO-204AH (DO-35)	Bulk
1N916B	916B	DO-204AH (DO-35)	Bulk
1N4148	4148	DO-204AH (DO-35)	Bulk
1N4148TA	4148	DO-204AH (DO-35)	Ammo
1N4148-T26A	4148	DO-204AH (DO-35)	Ammo
1N4148-T50A	4148	DO-204AH (DO-35)	Ammo
1N4148TR	4148	DO-204AH (DO-35)	Tape and Reel
1N4148-T50R	4148	DO-204AH (DO-35)	Tape and Reel
1N4448	4448	DO-204AH (DO-35)	Bulk
1N4448TR	4448	DO-204AH (DO-35)	Tape and Reel
FDLL914	Black	SOD-80	Tape and Reel
FDLL914A	Black	SOD-80	Tape and Reel
FDLL914B	Black	SOD-80	Tape and Reel
FDLL4148	Black	SOD-80	Tape and Reel
FDLL4148-D87Z	Black	SOD-80	Tape and Reel
FDLL4448	Black	SOD-80	Tape and Reel
FDLL4448-D87Z	Black	SOD-80	Tape and Reel

1N91x, 1N4x48, FDLL914, FDLL4x48

ABSOLUTE MAXIMUM RATINGS (Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 1)

Rating	Symbol	Value	Unit
Maximum Repetitive Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	100	V
Average Rectified Forward Current	I_{O}	200	mA
DC Forward Current	I_{F}	300	mA
Recurrent Peak Forward Current	I_{f}	400	mA
Non-repetitive Peak Forward Surge Current	Pulse Width $=1.0 \mathrm{~s}$	$\mathrm{I}_{\mathrm{FSM}}$	1.0
	Pulse Width $=1.0 \mu \mathrm{~s}$		4.0
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	-55 to +175	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are limiting values above which the serviceability of the diode may be impaired.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Power Dissipation	P_{D}	500	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {ӨJA }}$	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 2)

Symbol	Parameter		Conditions	Min	Max	Unit
V_{R}	Breakdown Voltage		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	100		V
			$\mathrm{I}_{\mathrm{R}}=5.0 \mu \mathrm{~A}$	75		V
V_{F}	Forward Voltage	914B / 4448	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$	0.62	0.72	V
		916B	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$	0.63	0.73	V
		914 / 916 / 4148	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.0	V
		914A / 916A	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1.0	V
		916B	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1.0	V
		914B / 4448	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		1.0	V
I_{R}	Reverse Leakage		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		0.025	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$		5.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {T }}$	Total Capacitance	916/916A/916B/4448	$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		2.0	pF
		914/914A/914B/4148	$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		4.0	pF
t_{rr}	Reverse Recovery Time		$\begin{gathered} \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6.0 \mathrm{~V}(600 \mathrm{~mA}) \\ \mathrm{I}_{\mathrm{rr}}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{gathered}$		4.0	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Non-recurrent square wave $\mathrm{P}_{\mathrm{w}}=8.3 \mathrm{~ms}$.

1N91x, 1N4x48, FDLL914, FDLL4x48

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Reverse Voltage vs. Reverse Current $B_{V}-1.0$ to $100 \mu \mathrm{~A}$

Figure 3. Forward Voltage vs. Forward Current $V_{F}-1$ to $100 \mu \mathrm{~A}$

Figure 5. Forward Voltage vs. Forward Current $V_{F}-10$ to $\mathbf{8 0 0} \mathrm{mA}$

Figure 2. Reverse Current vs. Reverse Voltage $I_{R}-10$ to 100 V

Figure 4. Forward Voltage vs. Forward Current $\mathrm{V}_{\mathrm{F}}-0.1$ to 10 mA

Figure 6. Forward Voltage vs. Ambient Temperature $\mathrm{V}_{\mathrm{F}}=0.01-20 \mathrm{~mA}\left(-40\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Total Capacitance

Figure 9. Average Rectified Current ($\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$) vs. Ambient Temperature (T_{A})

Figure 8. Reverse Recovery Time vs. Reverse Recovery Current

Figure 10. Power Derating Curve

AXIAL LEAD
CASE 017AG
ISSUE O
DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13443G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.

| DOCUMENT NUMBER: | 98AON79582E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MINIMELF / SOD-80 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-

E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E
NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E $\underline{\text { NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G }}$

