ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

ON Semiconductor®

FDMA1032CZ

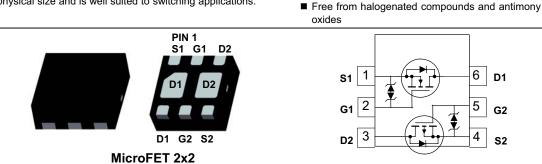
20V Complementary PowerTrench® MOSFET

General Description

This device is designed specifically as a single package solution for a DC/DC 'Switching' MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to switching applications.

Features

- Q1: N-Channel
- 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega @ V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega @ V_{GS} = 2.5V$


Q2: P-Channel

-3.1 A, -20V. $R_{DS(ON)}$ = 95 m Ω @ V_{GS} = -4.5V $R_{DS(ON)}$ = 141 m Ω @ V_{GS} = -2.5V

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2 kV (Note 3)

151 (Dual Operation)

RoHS Compliant

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain-Source Voltage		20	-20	V	
V _{GS}	Gate-Source Voltage		±12	±12	V	
ID	Drain Current – Continuous	(Note 1a)	3.7	-3.1	A	
	– Pulsed		6	-6		
PD	Power Dissipation for Single Operation	(Note 1a)	<u> </u>		W	
		(Note 1b)				
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to +150		°C	
Therma	I Characteristics					
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)		∘c/w	
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual C	·C/W		

Package Marking and Ordering Information

Thermal Resistance, Junction-to-Ambient

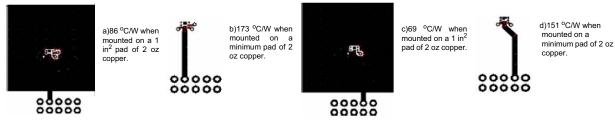
-	Device Marking	Device	Reel Size	Tape width	Quantity
	032	FDMA1032CZ	7"	8mm	3000 units
_					

(Note 1d)

© 2010 Semiconductor Components Industries, LLC. October-2017, Rev. 2

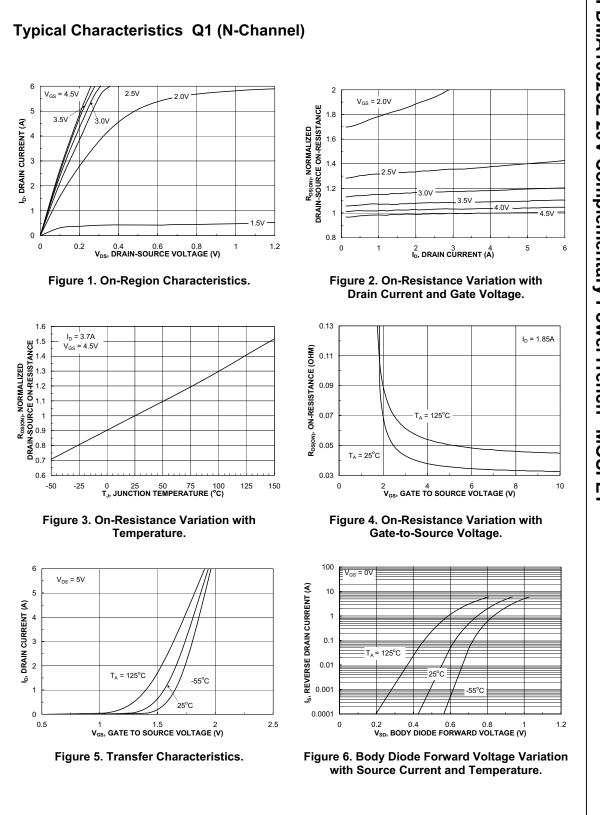
 $R_{\theta JA}$

Publication Order Number: FDMA1032CZ/D

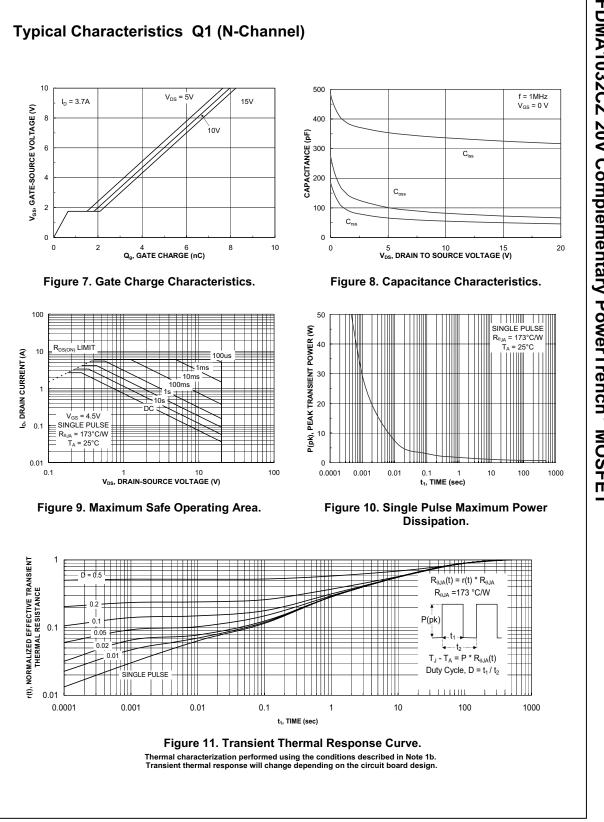

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0 V$, $I_D = 250 \mu A$	Q1	20			V
	Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	Q2	-20	45		
<u>∆BVpss</u> ∆Tj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C $I_D = -250 \ \mu$ A, Referenced to 25°C	Q1 Q2		15 –12		mV/°C
	Zero Gate Voltage Drain	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$	Q1			1	μA
500	Current	$V_{DS} = -16 V, V_{GS} = 0 V$ $V_{GS} = \pm 12 V, V_{DS} = 0 V$	Q2			1	par
GSS	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$	All			±10	μA
On Chai	racteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	Q1	0.6	1.0	1.5	V
		$V_{DS} = V_{GS}, \qquad I_D = -250 \ \mu A$	Q2	-0.6	_1.0	-1.5	
	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C	Q1 Q2		_4 _4		mV/°C
ΔT_J $R_{DS(on)}$	Static Drain-Source	$I_D = -250 \ \mu$ A, Referenced to 25°C $V_{GS} = 4.5 \ V$, $I_D = 3.7 \ A$	Q2 Q1		37	68	mΩ
VDS(on)	On-Resistance	$V_{GS} = 2.5 V, I_D = 3.3 A$			50	86	1115.2
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 3.7 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$			53	90	
		$V_{GS} = -4.5V, I_D = -3.1 A$	Q2		60	95	mΩ
		$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ A}$			88	141	
~	Forward Transconductance	$V_{GS} = -4.5 \text{ V}, I_D = -3.1 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{DS} = 10 \text{ V}, \qquad I_D = 3.7 \text{ A}$	Q1		87 16	140	S
9 _{FS}	Forward Transconductance	$V_{DS} = -10 V$, $I_D = -3.1 A$ $V_{DS} = -10 V$, $I_D = -3.1 A$	Q2		-11		3
Dynami	c Characteristics						
	Input Capacitance	Q1	Q1		340		pF
		V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	Q2		540		
C _{oss}	Output Capacitance	02	Q1		80		pF
C _{rss}	Reverse Transfer	Q2 V _{DS} = -10 V, V _{GS} = 0 V, f = 1.0 MHz	Q2 Q1		120 60		pF
	Capacitance		Q2		100		
	<u>v</u>	ote 2)					r
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 10 V, I _D = 1 A,	Q1 Q2		8 13	16 24	ns
t _r	Turn-On Rise Time	$V_{\text{DD}} = 10 \text{ V}, \text{ I}_{\text{D}} = 1 \text{ A},$ $V_{\text{GS}} = 4.5 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$	Q2 Q1		8	16	ns
4			Q2		11	20	
t _{d(off)}	Turn-Off Delay Time	Q2	Q1		14	26	ns
1		$V_{DD} = -10 V, I_D = -1 A,$	Q2		37	59	
t _f	Turn-Off Fall Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω	Q1 Q2		3 36	6 58	ns
	Total Gate Charge	Q1	Q1		4	6	nC
Q _a	-	V_{DS} = 10 V, I_{D} = 3.7 A, V_{GS} = 4.5 V	Q2		7	10	
Q _g					0.7		nC
-	Gate-Source Charge		Q1				
Q _g Q _{gs} Q _{gd}	Gate-Source Charge Gate-Drain Charge	Q_2 $V_{DS} = -10 \text{ V, I}_D = -3.1 \text{ A,}$	Q1 Q2 Q1		1.1 1.1		nC

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-S	Source Diode Character	istics and Maximum Rating	5				
Is	Maximum Continuous Source-Drain Diode Forward Current					1.1	A
			Q2			-1.1	
V _{SD}	Source-Drain Diode Forward	V _{GS} = 0 V, I _S = 1.1 A (Note 2)	Q1		0.7	1.2	V
	Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)	Q2		-0.8	-1.2	
t _{rr}	Diode Reverse Recovery	Q1	Q1		11		ns
	Time	I _F = 3.7 A, dI _F /dt = 100 A/μs	Q2		25		
Q _{rr}	Diode Reverse Recovery	Q2	Q1		2		nC
	Charge	I _F = -3.1 A, dI _F /dt = 100 A/µs	Q2		9		

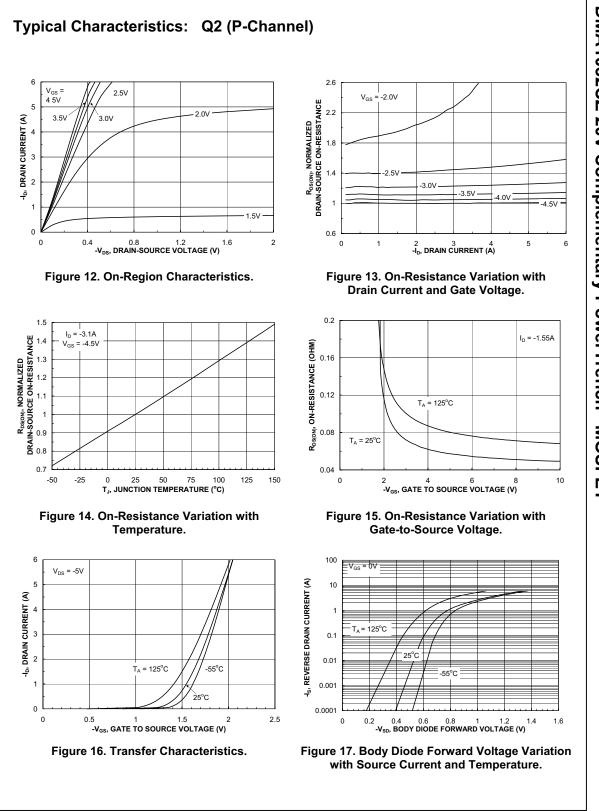
Notes:

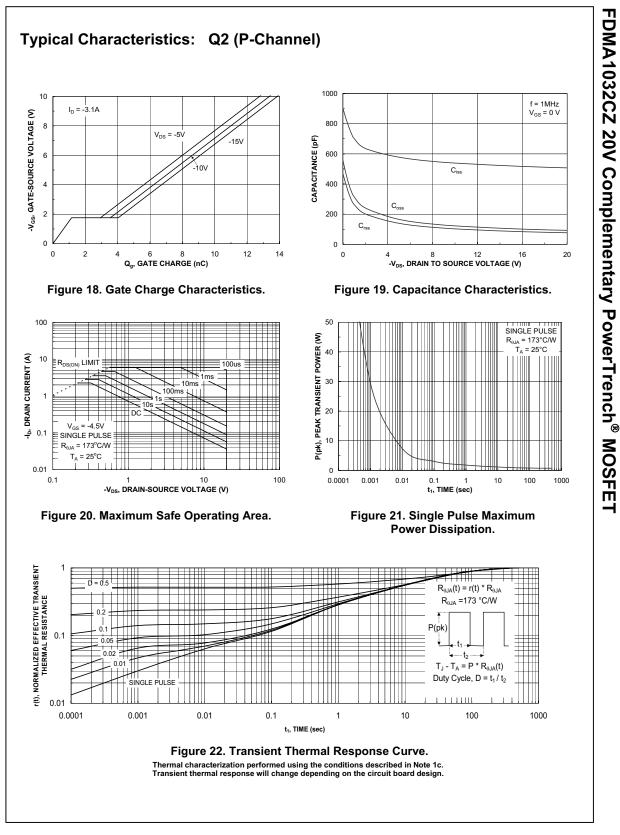

1. R_{8JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8JA} is determined by the user's board design. (a) R_{8JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

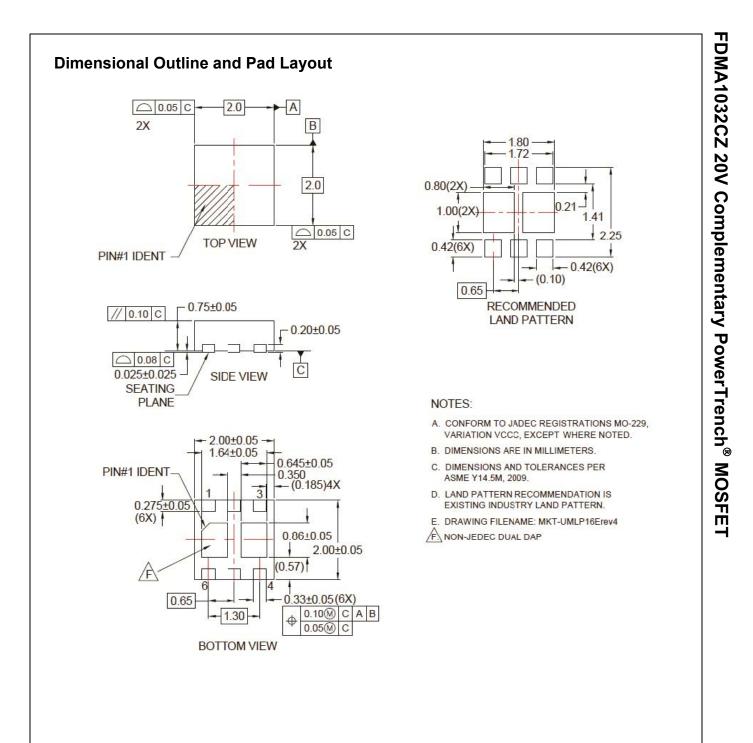
- (b) R_{0JA} = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
- (c) R_{0JA} = 69 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
- (d) $R_{\theta JA}$ = 151 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.



2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


FDMA1032CZ 20V Complementary PowerTrench[®] MOSFET



FDMA1032CZ 20V Complementary PowerTrench[®] MOSFET

FDMA1032CZ 20V Complementary PowerTrench[®] MOSFET

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B