

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

General Description

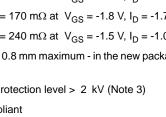
This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

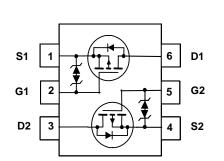
MicroFET 2x2

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-30	V	
V _{GS}	Gate to Source Voltage		±8	V	
	Drain Current -Continuous	(Note 1a)	-2.9	٨	
D	-Pulsed		-6	A	
P _D	Power Dissipation	(Note 1a)	1.4	14/	
	Power Dissipation	(Note 1b)	0.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	


Thermal Characteristics

R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1a)	86	
$R_{ ext{ heta}JA}$	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1c)	69	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1d)	151	

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
323	FDMA3023PZ	MicroFET 2X2	7 "	8 mm	3000 units

D1 G2 S2

FAIRCHILD

FDMA3023PZ

Dual P-Channel PowerTrench[®] MOSFET

-30 V, -2.9 A, 90 mΩ

Features

- Max $r_{DS(on)}$ = 90 m Ω at V_{GS} = -4.5 V, I_D = -2.9 A
- Max $r_{DS(on)}$ = 130 m Ω at V_{GS} = -2.5 V, I_D = -2.6 A
- Max $r_{DS(on)}$ = 170 m Ω at V_{GS} = -1.8 V, I_D = -1.7 A
- Max r_{DS(on)} = 240 mΩ at V_{GS} = -1.5 V, I_D = -1.0 A

Free from halogenated compounds and antimony

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2 kV (Note 3)
- RoHS Compliant

oxides

FDMA3023PZ Dual
Dual
P-Channel
PowerTrench [®]
MOSFET

BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 $\mu A,$ referenced to 25 °C		-24		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
On Char	acteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.6	-1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		3		mV/°C	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$		71	90		
	Static Drain to Source On Resistance	V_{GS} = -2.5 V, I_{D} = -2.6 A		97	130		
r _{DS(on)}		V_{GS} = -1.8 V, I_{D} = -1.7 A		122	170	mΩ	
		$V_{GS} = -1.5 \text{ V}, I_D = -1.0 \text{ A}$		151	240]	
		V_{GS} = -4.5 V, I _D = -2.9 A, T _J = 125 °C		110	140		
9fs	Forward Transconductance	$V_{GS} = -4.5 \text{ V}, \text{ I}_D = -2.9 \text{ A}, \text{ T}_J = 125 \text{ °C}$ $V_{DS} = -5 \text{ V}, \text{ I}_D = -2.9 \text{ A}$		110 10	140	S	
Dynamic	Forward Transconductance			-	140	S	
Dynamic		V _{DS} = -5 V, I _D = -2.9 A		-	140 530	S pF	
Dynamic C _{iss} C _{oss}	c Characteristics	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10			
Dynamic C _{iss}	Characteristics	V _{DS} = -5 V, I _D = -2.9 A		10 400	530	pF	
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55	530 70	pF pF	
Dynamic C _{iss} C _{oss} C _{rss} Switchin	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55	530 70	pF pF	
Dynamic C _{iss} C _{oss} C _{rss}	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otheracteristics	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55 45	530 70 65	pF pF pF	
Dynamic C _{iss} C _{oss} C _{rss} Switchin	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otharacteristics Turn-On Delay Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ - $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ - f = 1 MHz		10 400 55 45 5	530 70 65 10	pF pF pF ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r $t_{d(off)}$	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otharacteristics Turn-On Delay Time Rise Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$		10 400 55 45 5 4 4	530 70 65 10 10	pF pF pF ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r $t_{d(off)}$ t_f	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance G Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		10 400 55 45 5 4 62	530 70 65 10 10 100	pF pF pF ns ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance G Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$		10 400 55 45 5 4 62 18	530 70 65 10 10 100 33	pF pF pF ns ns ns	

Test Conditions

Min

Тур

Max

Units

Drain-Source Diode Characteristics

Electrical Characteristics $T_J = 25 \ ^{\circ}C$ unless otherwise noted

Parameter

Symbol

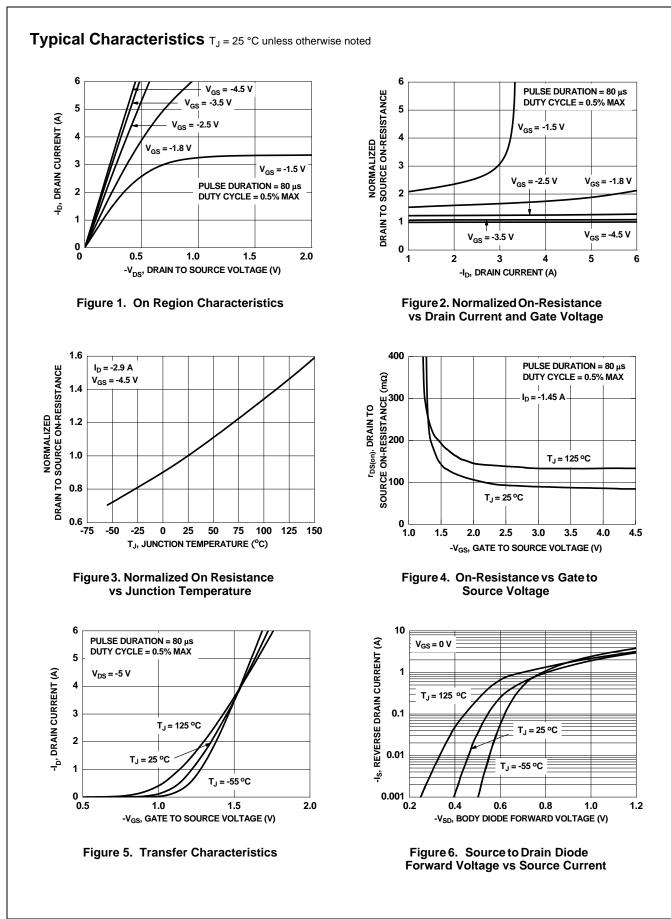
Off Characteristics

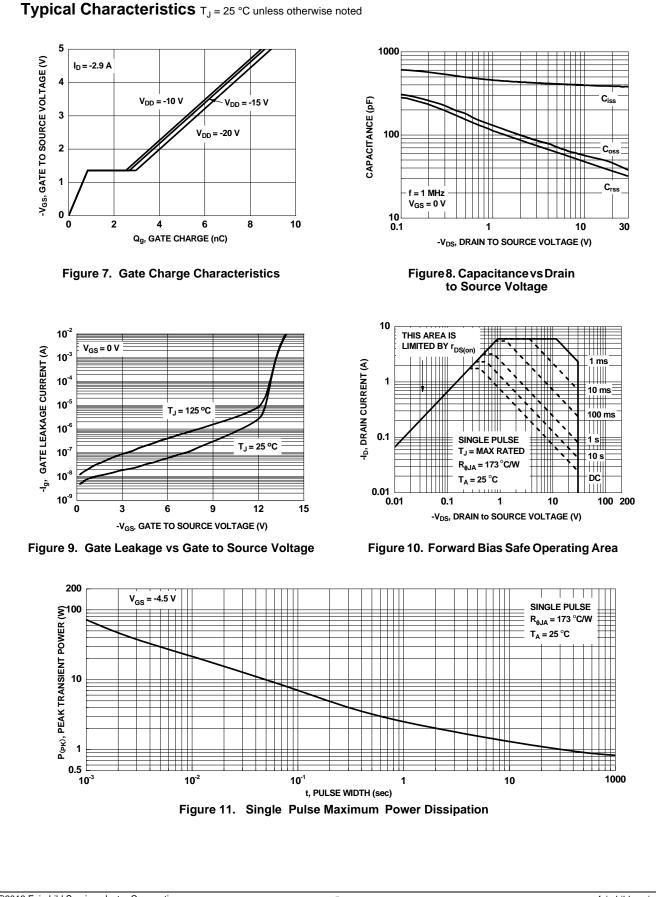
I _S	Maximum Continuous Drain-Source Diode Forward Current				-1.1	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -2.9 A, di/dt = 100 A/μs		18	33	ns
Q _{rr}	Reverse Recovery Charge	$-1F = -2.3 \text{ A}, \text{ u/ut} = 100 \text{ A/}\mu\text{s}$		6.6	13	nC

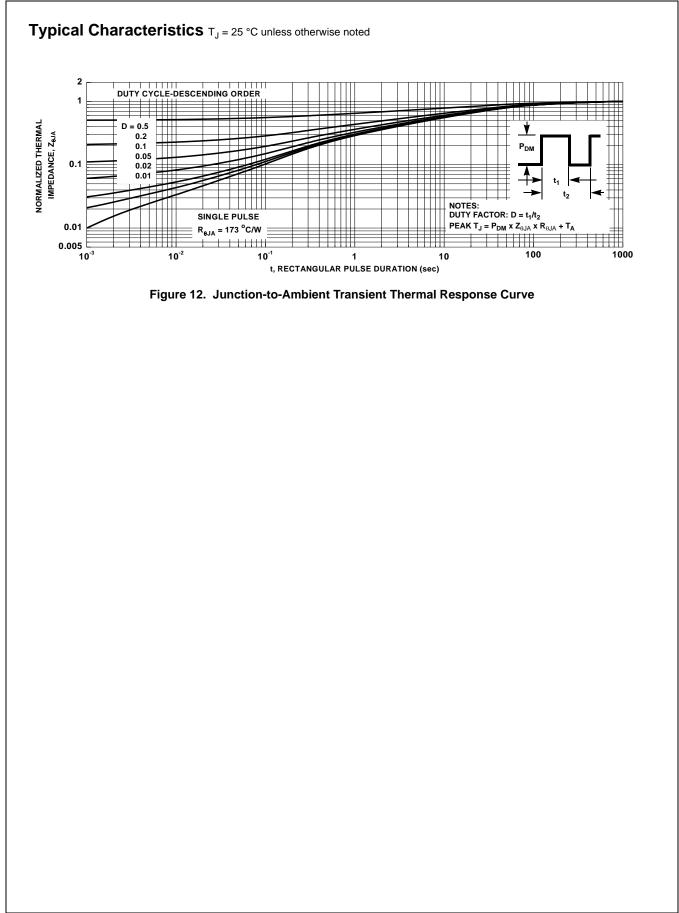
2

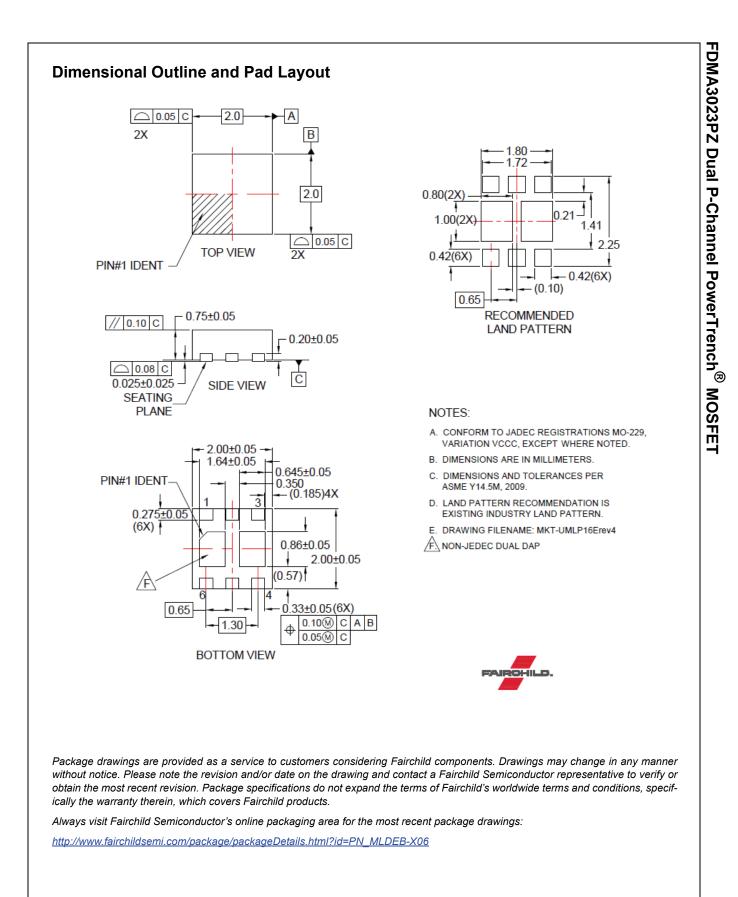
FDMA3023PZ Dual P-Channel PowerTrench[®] MOSFET

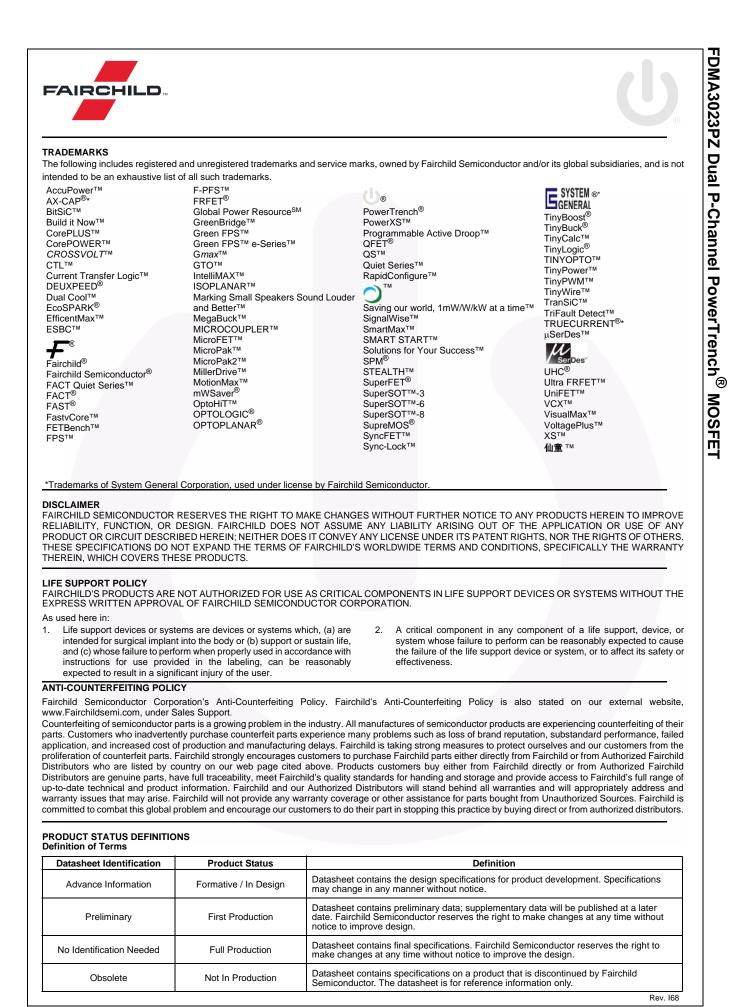
Notes:


R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
 (a) R_{0JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.


- (a) R_{0JA} = 86 °C/W when mounted on a 1 m² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single opera
 (b) R_{0JA} = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
- (c) $R_{BJA} = 69 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
- (d) $R_{\theta JA} = 151 \text{ °C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.




2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B