MOSFET - Power, Single P-Channel, POWERTRENCH®

–30 V, –6.8 A, 35 m Ω

FDMA530PZ

General Description

This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications . It features a MOSFET with low on-state resistance.

The WDFN6 (MicroFET 2×2) package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

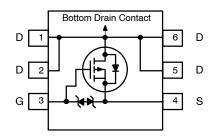
Features

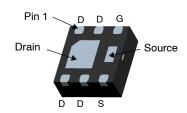
- Max $r_{DS(on)} = 35 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -6.8 \text{ A}$
- Max $r_{DS(on)} = 65 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -5.0 \text{ A}$
- Low Profile 0.8 mm Maximum in the New Package WDFN6 (MicroFET 2 × 2 mm)
- HBM ESD Protection Level > 3k V Typical (Note 3)
- Free from Halogenated Compounds and Antimony Oxides
- RoHS Compliant

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter		Ratings	Unit
V_{DS}	Drain to Source	-30	V	
V_{GS}	Gate to Source Voltage		±25	V
I _D	Drain Current	Continuous (Note 1a)	-6.8	Α
		Pulsed	-24	
P _D	Power	(Note 1a)	2.4	W
	Dissipation	(Note 1b)	0.9	
T _J , T _{STG}	Operating Junc Temperature Ra	tion and Storage ange	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERITICS


Symbol	Parameter	Ratings	Unit	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
	Junction to Ambient	(Note 1b)	145	

ON Semiconductor®

www.onsemi.com

WDFN6 (MicroFET 2 x 2) CASE 511CZ

MARKING DIAGRAM

&Z&2&K 530

&Z = Assembly Plant Code

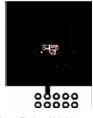
&2 = Date Code &K = Lot Code

530 = Specific Device Code

ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
530	FDMA530PZ	WDFN6 (MicroFET 2x2)	3000 Units/ Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


FDMA530PZ

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARAC	TERISTICS					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μA, referenced to 25°C		-23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
N CHARACT	ERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-1	-2.1	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = -250 μA, referenced to 25°C		5.4		mV/°C
r _{DS(on)}	Static Drain to Source on Resistance	$V_{GS} = -10 \text{ V}, I_D = -6.8 \text{ A}$		30	35	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -5.0 \text{ A}$		52	65	1
		$V_{GS} = -10 \text{ V}, I_D = -6.8 \text{ A},$ $T_J = 125^{\circ}\text{C}$		43	63	
9 _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -6.8 \text{ A}$		17		S
YNAMIC CHA	ARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz		805	1070	pF
C _{oss}	Output Capacitance			155	210	
C _{rss}	Reverse Transfer Capacitance			130	195	
Rg	Gate Resistance		1	18	38	Ω
WITCHING C	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, I_D = -6.8 \text{ A},$		6	12	ns
t _r	Rise Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$		21	34	1
t _{d(off)}	Turn-Off Delay Time			43	69	1
t _f	Fall Time	1		31	50	1
Qg	Total Gate Charge	V _{GS} = -10 V		16	24	nC
Qg	Total Gate Charge	V _{GS} = -5 V		9	11	
Q _{gs}	Gate to Source Gate Charge	V _{DD} = −15 V		3.1		
Q _{gd}	Gate to Drain "Miller" Charge	I _D = -6.8 A		4.5		1
	CE DIODE CHARACTERISTICS			•	•	
I _S	Maximum Continuous Drain-Source Diode Forward Current				-2	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -2 \text{ A}$		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -6.8 A,		24	36	ns
Q _{rr}	Reverse Recovery Charge	di/dt = 100 A/μS		19	29	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

a. 52 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 145 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and the source serves only as protection against ESD. No gate overvoltage rating is implied.

FDMA530PZ

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

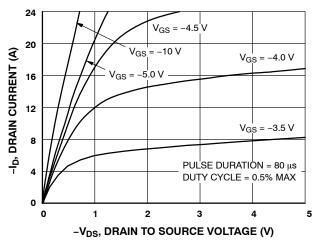


Figure 1. On-Region Characteristics

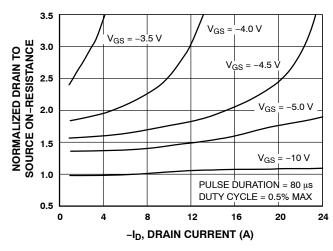


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

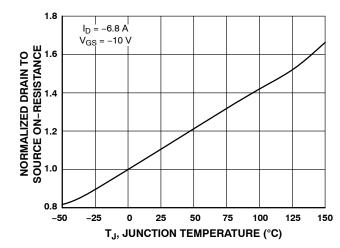


Figure 3. Normalized On–Resistance vs. Junction Temperature

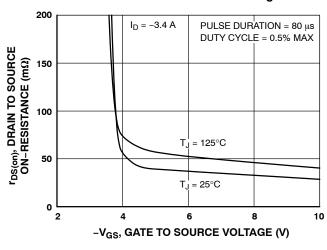


Figure 4. On-Resistance vs. Gate to Source Voltage

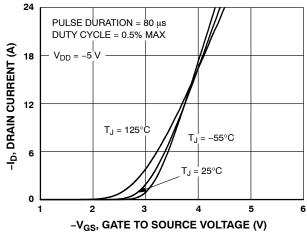


Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

FDMA530PZ

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

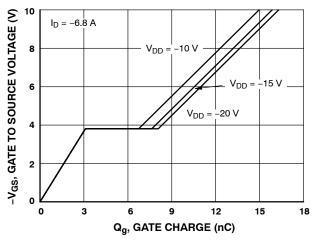


Figure 7. Gate Charge Characteristics

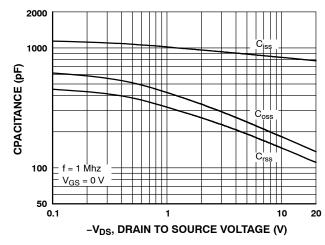


Figure 8. Capacitance vs. Drain to Source Voltage

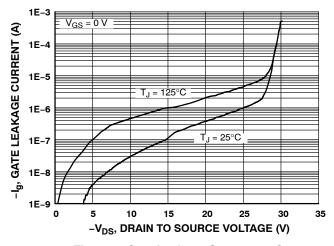


Figure 9. Gate Leakage Current vs. Gate to Source Voltage

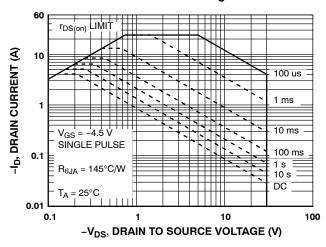


Figure 10. Forward Bias Safe Operating Area

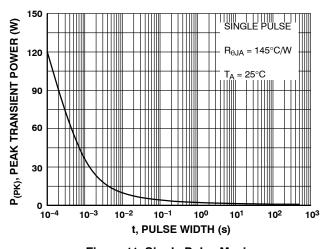
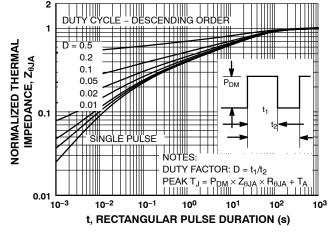
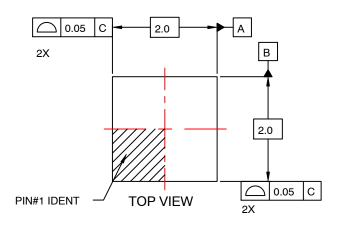
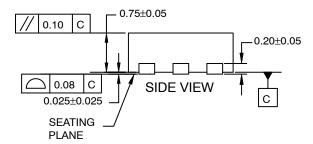
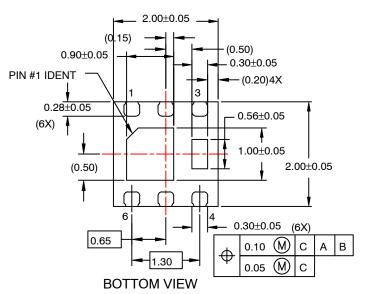
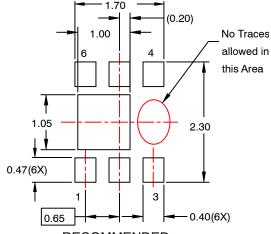


Figure 11. Single Pulse Maximum Power Dissipation

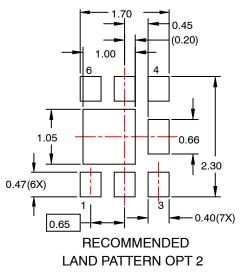




Figure 12. Transient Thermal Response Curve


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


WDFN6 2x2, 0.65P CASE 511CZ ISSUE O

DATE 31 JUL 2016



RECOMMENDED LAND PATTERN OPT 1

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13614G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7