MOSFET, Dual N-Channel, POWERTRENCH[®]

Q1: 30 V, 11.6 m Ω ; Q2: 30 V, 6.4 m Ω

General Description

This device includes two specialized N–Channel MOSFETs in a dual Power33 ($3mm \times 3mm$ MLP) package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency.

Features

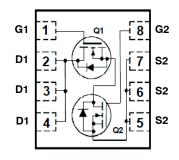
Q1: N-Channel

- Max $r_{DS(on)} = 11.6 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 13.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 9 \text{ A}$ Q1: N-Channel
- Max $r_{DS(on)} = 6.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 16 \text{ A}$
- Max $r_{DS(on)} = 7.0 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$
- RoHS Compliant

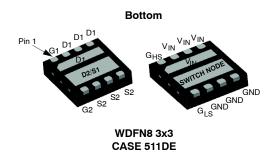
Applications

- Mobile Computing
- Mobile Internet Devices
- General Purpose Point of Load

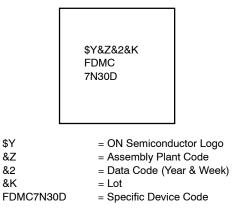
MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)


Symbol	Parameter	Q1	Q2	Unit
V _{DS}	Drain to Source Voltage	30	30	V
V _{GS}	Gate to Source Voltage (Note 4)	±12	±12	V
۱ _D	Drain Current: - Continuous, $T_C = 25^{\circ}C$ (Note 6) - Continuous, $T_C = 100^{\circ}C$ (Note 6) - Continuous, $T_A = 25^{\circ}C$	29 18 10	46 29 16	A
	(Note 1a) – Pulsed (Note 5)	(Note 1a) 113	(Note 1b) 302	
E _{AS}	Single Pulse Avalanche Energy (Note 3)	24	54	mJ
PD	Power Dissipation for Single Operation: $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	1.9 (Note 1a) 0.7 (Note 1c)	2.5 (Note 1b) 1.0 (Note 1d)	V
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

Dual N-Channel MOSFET

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Quantity
FDMC7N30D	FDMC007N30D	WDFN-8 (Power 33)	3000/Tape&Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	8.2	6.1	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	65 (Note 1a)	50 (Note 1b)	
		180 (Note 1c)	125 (Note 1d)	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit	
OFF CHARA	DFF CHARACTERISTICS							
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} \\ I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} $	Q1 Q2	30 30			V	
$\Delta BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = 250 µA, referenced to 25°C	Q1 Q2		15 16		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24$ V, $V_{GS} = 0$ V	Q1 Q2			1 1	μΑ	
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS}=\pm 12~V,~V_{DS}=0~V$	Q1 Q2			±100 ±100	nA	

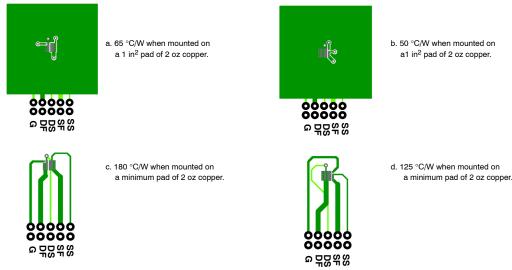
ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = $V_{DS},~I_D$ = 250 μA V_{GS} = $V_{DS},~I_D$ = 250 μA	Q1 Q2	1.0 1.0	1.3 1.8	3.0 3.0	V
${\Delta V_{GS(th)} \over /\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$\begin{array}{l} I_D = 250 \; \mu \text{A}, \; \text{referenced to} \; 25^\circ \text{C} \\ I_D = 250 \; \mu \text{A}, \; \text{referenced to} \; 25^\circ \text{C} \end{array}$	Q1 Q2		-4 -4		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 9 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q1		7.7 8.9 10.8	11.6 13.3 16.3	mΩ
r _{DS(on)}	Static Drain to Source On Resis- tance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 16 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 16 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q2		4.4 5.4 6.2	6.4 7.0 9.0	mΩ
9 _{FS}	Forward Transconductance	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ $V_{DD} = 5 \text{ V}, \text{ I}_{D} = 16 \text{ A}$	Q1 Q2		46 70		S

DYNAMIC CHARACTERISTICS

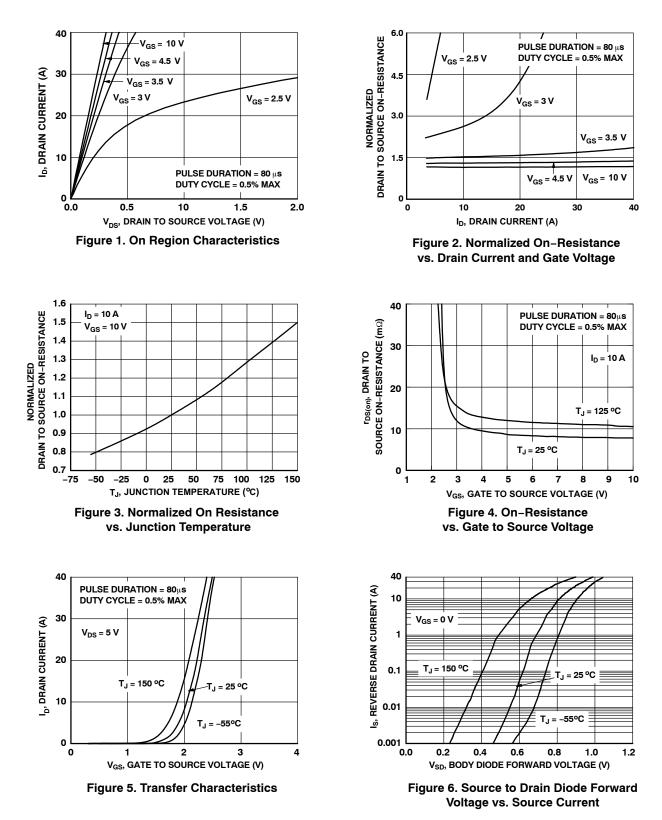
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2		792 1685	1110 2360	pF
C _{oss}	Output Capacitance		Q1 Q2		230 467	325 655	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		20 36	30 50	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	2.0 1.2	4.0 2.4	Ω

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

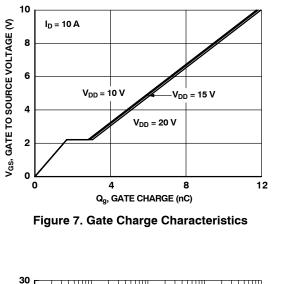

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit		
SWITCHING CHARACTERISTICS									
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 15 V, I _D = 10 A,	Q1 Q2		7 10	14 20	ns		
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	Q1 Q2		2 3	10 10	ns		
t _{d(off)}	Turn-Off Delay Time	V _{DD} = 15 V, I _D = 16 A, V _{GS} = 10 V, R _{GEN} = 6 Ω	Q1 Q2		19 24	33 39	ns		
t _f	Fall Time		Q1 Q2		2 3	10 10	ns		
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V Q1$ $V_{DD} = 15 V,$	Q1 Q2		12 24	17 34	nC		
		$V_{GS} = 0 V \text{ to } 4.5 V I_D = 10 A$	Q1 Q2		5.5 11	7.7 16	nC		
Q _{gs}	Gate to Source Charge	Q2 V _{DD} = 15 V, I _D = 16 A	Q1 Q2		1.7 4.4		nC		
Q _{gd}	Gate to Drain "Miller" Charge		Q1 Q2		1.3 2.7		nC		

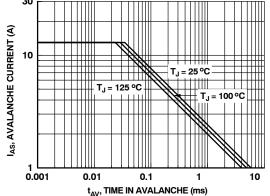
DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source-Drain Diode Forward Voltage	$ \begin{array}{l} V_{GS} = 0 \; V, \; I_S = 10 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 1.5 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 16 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 2 \; A \; (Note \; 2) \end{array} $	Q1 Q1 Q2 Q2	0.85 0.75 0.83 0.73	1.2 1.2 1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 10 A, di/dt = 100 A/µs	Q1 Q2	17 27	31 42	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 16 A, di/dt = 100 A/µs	Q1 Q2	5 10	10 20	nC

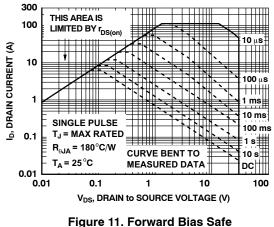

NOTES:

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.




- Pulse Test: Pulse Width < 300 uS, Duty cycle < 2.0%.
 Q1: E_{AS} of 24 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 4 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 13 A. Q2: E_{AS} of 54 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 22 A.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
 Pulsed Id please refer to Figure 11 and Figure. 24 SOA graph for more details.
- 6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL)



TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

Operating Area

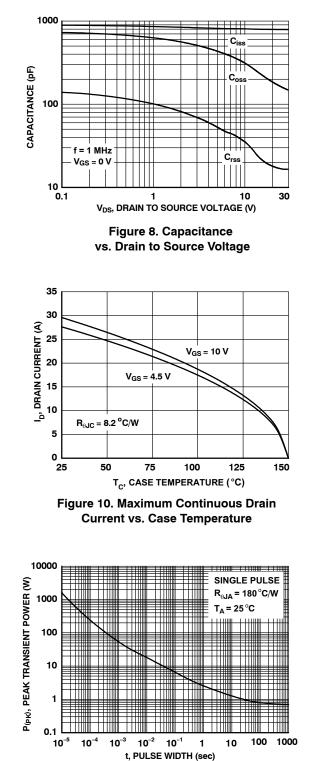


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

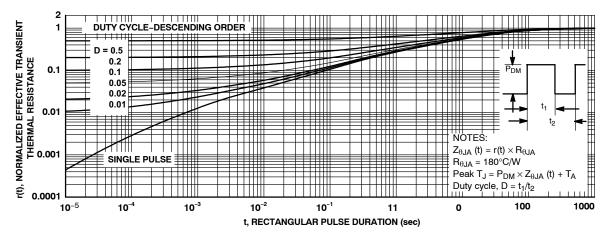
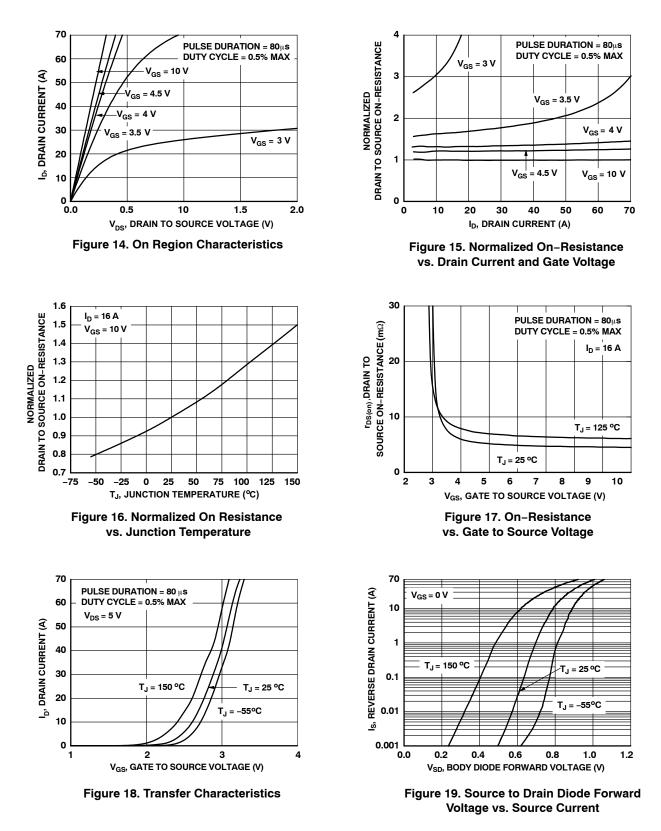



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL)

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (continued)

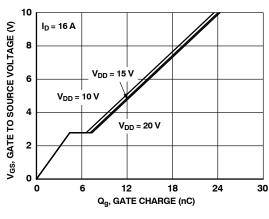
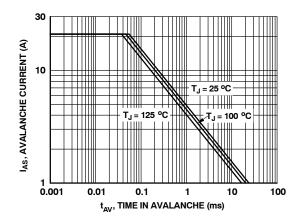
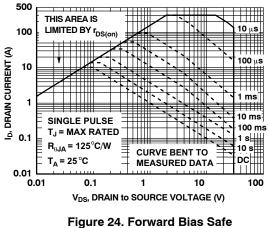




Figure 20. Gate Charge Characteristics

Operating Area

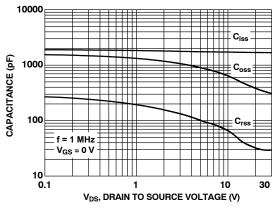


Figure 21. Capacitance vs. Drain to Source Voltage

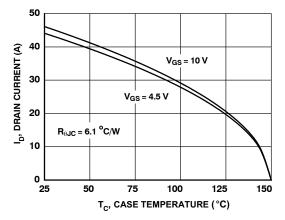


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

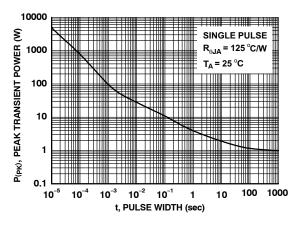


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

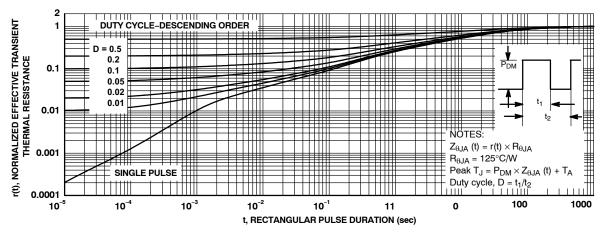


Figure 26. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and or other countries.

0.10 C 2X

PIN#1 QUADRANT

// 0.10 C

0.08 C

PIN #1 IDENT

(8X) 0.37 0.27

0.8 MAX-

8.85

SEATING PLANE

3.0

TOP VIEW

SIDE VIEW

2.45 2.35

4

5

1.95

8

0.65

0.41

0.06 ⊣ 0.250

WDFN8 3x3, 0.65P CASE 511DE ISSUE O

Α

В

3.0

0.10 C

(0.203)

0.57

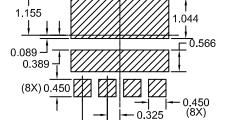
1.86

0.05M lC

0.10 C A B

1.04 0.94

0.45 0.35 (8X)


Φ

0.47

Ċ

2X

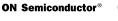
DATE 31 AUG 2016

2.550

RECOMMENDED LAND PATTERN

0.650

NOTES:


A. DOES NOT CONFORM TO JEDEC **REGISTRATION MO-229**

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

DOCUMENT NUMBER:	98AON13621G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED							
DESCRIPTION:	WDFN8 3X3, 0.65P		PAGE 1 OF 1						
ON Semiconductor and 🛄 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding									

untries. garding the suitability of its products for any products for any products of any products of any product of the suitability of its products for any product of the suitability of its products for any product of or any product of the suitability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B