

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

Features

- $\operatorname{Max} \mathrm{r}_{\mathrm{DS}(o n)}=1.5 \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$
- Low Crss (typical 10pF)
- Fast Switching
- Low gate charge (typical 6.2 nC)

■ Improved dv / dt capability

- RoHS Compliant

General Description

These P-Channel MOSFET enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

Application

- Active Clamp Switch

MLP 3.3x3.3

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\text {DS }}$	Drain to Source Voltage	-150	V
V_{GS}	Gate to Source Voltage	± 30	V
I_{D}	Drain Current -Continuous $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-3	A
	-Continuous $\quad \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	-1.8	
	-Pulsed	-12	
P_{D}	Power Dissipation (Steady State) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	42	W
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy (Note 5)	3.3	mJ
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	${ }^{\circ} \mathrm{C}$
dv/dt	Peak Diode Recovery dv/dt (Note 2)	-5	V/ns

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance, Junction to Case	(Note 1)	3.0	
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	(Note 1a)	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
$2523 P$	FDMC2523P	MLP 3.3×3.3	$13 "$	12 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV ${ }_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-150			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		-138		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
ldss	Zero Gate Voltage Drain Current	$\begin{aligned} V_{D S}=-150 V, & V_{G S}=0 V \\ & T_{J}=125^{\circ} C \end{aligned}$			-1 -10	$\mu \mathrm{A}$
IGSs	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-3	-3.8	-5	V
$\frac{\Delta \mathrm{~V}_{\mathrm{GS}}(\text { th })}{}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
r_{DS} (on)	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$		1.1	1.5	Ω
	$\mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		2.0	3.6		
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A} \quad$ (Note 4)		1.4		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		200	270	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			60	80	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	$\mathrm{f}=1 \mathrm{MHz}$		10	15	pF
R_{g}	Gate Resistance		0.1	7.5	15	Ω

Switching Characteristics

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$ (Note 3,	15	27	ns
t_{r}	Rise Time		11	20	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		19	35	ns
t_{f}	Fall Time		13	24	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & V_{G S}=-10 V \\ & V_{D D}=-75 \mathrm{~V} \\ & I_{D}=-3 A \end{aligned}$ (Note 3,4)	6.2	9	nC
Q_{gs}	Gate to Source Gate Charge		1.4		nC
$\mathrm{Q}_{\text {gd }}$	Gate to Drain "Miller" Charge		3.3		nC

Drain-Source Diode Characteristics

I_{S}	Maximum continuous Drain - Source Diode Forward Current			-3	A
I_{SM}	Maximum Pulse Drain - Source Doide Forward Current			-12	A
$\mathrm{~V}_{\mathrm{SD}}$	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-3.0 \mathrm{~A}$		-1.8	-5
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=-3.0 \mathrm{~A}$, di/dt $=100 \mathrm{~A} / \mu \mathrm{S} \quad$ (Note 3)		V	
Q_{rr}	Reverse Recovery Charge		03		ns

Notes:

1: $R_{\theta J A}$ is the sum of the junction-to-case and case-to- ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

2: $\mathrm{I}_{\mathrm{SD}} \leq-3 \mathrm{~A}, \mathrm{dl} / \mathrm{dt} \leq 300 \mathrm{~A} / \mathrm{us}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{B}_{\mathrm{VDSS}}$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
3: Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty cycle $<2.0 \%$
4: Essentially independent of operating temperature.
5: $E_{A S}$ of 3.3 mJ is based on starting $T_{J}=25^{\circ} \mathrm{C}$; P-ch: $L=3 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=-1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$.

Typical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On-Region Characteristics

Figure 3. Normalized On-Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure9. Unclamped Inductive Switching Capability

Figure8. Capacitancevs Drain to Source Voltage

Figure 10. Forward Bias Safe Operating Area

Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 12. Transient Thermal Response Curve

RECOMMENDED LAND PATTERN

NOTES:

A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-MLP08Srev3.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

