FDMC6675BZ

P-Channel POWERTRENCH ${ }^{\circledR}$ MOSFET

-30 V, -20 A, $14.4 \mathrm{~m} \Omega$

Description

The FDMC6675BZ has been designed to minimize losses in load switch applications. Advancements in both silicon and package technologies have been combined to offer the lowest $\mathrm{R}_{\mathrm{DS}(\text { on })}$ and ESD protection.

Features

- $\operatorname{Max} \mathrm{R}_{\mathrm{DS}(\text { on })}=14.4 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$
- $\operatorname{Max} \mathrm{R}_{\mathrm{DS}(\text { on })}=27.0 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6.9 \mathrm{~A}$
- HBM ESD Protection Level of 8 kV Typical (Note 3)
- Extended $\mathrm{V}_{\text {GSS }}$ Range $(-25 \mathrm{~V})$ for Battery Applications
- High Performance Trench Technology for Extremely Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- High Power and Current Handling Capability
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Load Switch in Notebook and Server
- Notebook Battery Pack Power Management

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathbf{V}_{\mathbf{D S}}$	$\mathbf{R}_{\mathbf{D S} \text { (on) }}$ MAX	$\mathbf{I}_{\mathbf{D} \text { MAX }}$
-30 V	$14.4 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	-20 A

MARKING DIAGRAM
\$Y\&Z\&2\&K
FDMC
6675BZ

$\$ Y$	$=$ ON Semiconductor Logo
$\& Z$	$=$ Assembly Plant Code
$\& 2$	$=$ Numeric Date Code
$\& K$	$=$ Lot Code
FDMC6675BZ	$=$ Specific Device Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Unless otherwise specified)

Symbol	Parameter	Ratings	Unit
$V_{\text {DS }}$	Drain to Source Voltage	-30	V
V_{GS}	Gate to Source Voltage	± 25	V
I_{D}	Drain Current - Continuous $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-20	A
	- Continuous $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1a)	-9.5	
	- Pulsed	-32	
P_{D}	Power Dissipation $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	36	W
	Power Dissipation $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1a)	2.3	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$\mathrm{R}_{\theta \mathrm{JJC}}$	Thermal Resistance, Junction to Case	3.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJA }}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping (Qty / Packing) ${ }^{\dagger}$
FDMC6675BZ	FDMC6675BZ	WDFN8 3.3x3.3, 0.65P (MLP) (Pb-Free/Halogen Free)	$13^{\prime \prime}$	12 mm	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit

OFF CHARACTERISTICS

$\mathrm{BV}_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-30	-	-	V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	-	-20	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }_{\text {l }}^{\text {DSS }}$	Zero Gate Voltage Drain Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=-24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	-	-	$\begin{gathered} \hline-1 \\ -100 \end{gathered}$	$\mu \mathrm{A}$
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 10	$\mu \mathrm{A}$

ON CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-1.0	-1.9	-3.0	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	-	-6.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	10.7	14.4	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6.9 \mathrm{~A}$	-	17.4	27.0	
		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	-	15.2	20.5	
gFS	Forward Transconductance	$\mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	28	-	S

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}$ GS $=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	2154	2865	pF	
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	392	525	pF	
	$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		-	349	525	pF

SWITCHING CHARACTERISTICS

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	-	11	20	ns
t_{r}	Rise Time		-	10	20	
$t_{\text {d(off) }}$	Turn-off Delay Time		-	44	71	
t_{f}	Fall Time		-	26	42	
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to -10 V, $\mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	46	65	nC
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to $-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	26	37	nC
Q_{gs}	Gate to Source Charge	$\mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	6.4	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	$\mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.5 \mathrm{~A}$	-	13	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS

$\mathrm{V}_{\text {SD }}$	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-9.5 \mathrm{~A}($ Note 2)	-	-0.89	-1.3	V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.6 \mathrm{~A}($ Note 2)	-	-0.73	-1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=-9.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}$	-	24	38	ns
$Q_{\text {rr }}$	Reverse Recovery Charge		-	15	27	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of $F R-4$ material. $R_{\theta C A}$ is determined by the user's board design.

a) $53^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper

b) $125^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad
2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty cycle $<2.0 \%$.
3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. On-Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 7. Gate Charge Characteristics

Figure 9. Unclamped Inductive Switching Capability

V_{DS}, Drain to Source Voltage (V)

Figure 11. Forward Bias Safe Operating Area

Figure 8. Capacitance vs Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 12. $\mathrm{I}_{\mathrm{gss}}$ vs $\mathrm{V}_{\text {gss }}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 13. Single Pulse Maximum Power Dissipation

Figure 14. Junction-to-Ambient Transient Thermal Response Curve

WDFN8 3.3x3.3, 0.65P
CASE 511DQ
ISSUE O
DATE 31 OCT 2016

RECOMMENDED LAND PATTERN

| DOCUMENT NUMBER: | 98AON13648G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFN8 3.3X3.3, 0.65P | PAGE 1 OF 2 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ALL DIMENSIONS AS PER OPTION A UNLESS SPECIFIED

BOTTOM VIEW
(OPTION C)
NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-240
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN
E. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. BURRS OR MOLD FLASH SHALL NOT EXCEED 0.10MM.

| DOCUMENT NUMBER: | 98AON13648G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFN8 3.3X3.3, 0.65P | PAGE 2 OF 2 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM
MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E
NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W
FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967
NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S
SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

