MOSFET – N-Channel, POWERTRENCH[®], SyncFET™

25 V, 40 A, 2 m Ω

General Description

The FDMC7570S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $R_{DS(on)}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

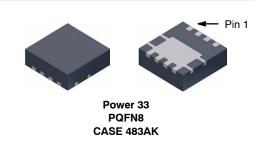
Features

- Max $R_{DS(on)} = 2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 27 \text{ A}$
- Max $R_{DS(on)} = 2.9 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 21.5 \text{ A}$
- Advanced Package and Combination for Low R_{DS(on)} and High Efficiency
- SyncFET Schottky Body Diode
- 100% UIL Tested
- These Devices are Pb-Free and are RoHS Compliant

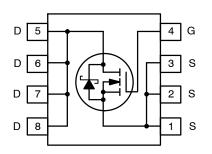
Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/GPU Low Side Switch
- Networking Point of Load Low Side Switch
- Telecom Secondary Side Rectification

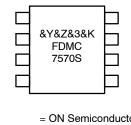
MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)


		-	
Parameter	Symbol	Rating	Unit
Drain to Source Voltage	V _{DS}	25	V
Gate to Source Voltage (Note 4)	V _{GS}	±20	V
Drain Current - Continuous (Package limited) $T_C = 25^{\circ}C$ - Continuous (Silicon limited) $T_C = 25^{\circ}C$ - Continuous $T_A = 25^{\circ}C$ (Note 1a) - Pulsed	I _D	40 132 27 120	A
Single Pulse Avalanche Energy (Note 3)	E _{AS}	144	mJ
Power Dissipation $T_{C} = 25^{\circ}C$	PD	59	W
Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)		2.3	
Operating and Storage Junction Temperature Range	T _J , T _{STG}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

= ON Semiconductor Logo = Assembly Plant Code

= As	ssembly	Plant	Coa
- 2		ta Co	do

- = 3-Digit Data Code = 2-Digit Lot Traceability Code
- FDMC7570S = Specific De

&Y

&Z &3

&K

= Specific Device Code

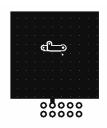
ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC7570S	PGFN8 (Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	2.1	°C/W
Thermal Resistance, Junction to Ambient (Note 1a)	Reja	53	


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTIC						
Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	BVDSS	25			V
Breakdown Voltage Temperature / Coefficient	I_D = 10 mA, referenced to 25°C	$\frac{\Delta \text{BV}_{\text{DSS}}/}{\Delta \text{T}_{\text{J}}}$		21		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	IDSS			500	μA
Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V	lgss			100	nA
ON CHARACTERISTICS					-	
Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	VGS(th)	1.2	1.7	3	V
Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to $25^{\circ}C$	$\frac{\Delta \text{VGS(th)}}{\Delta \text{T}_{\text{J}}}$		-4		mV/°C
Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 27 A	RDS(on)		1.6	2	mΩ
	V _{GS} = 4.5 V, I _D = 21.5 A			2.4	2.9	
	V_{GS} = 10 V, I _D = 27 A, T _J = 125°C			2.2	2.8	
Forward Transconductance	V _{DS} = 5 V, I _D = 27 A	gfs		154		S
DYNAMIC CHARACTERISTICS					-	
Input Capacitance	V_{DS} = 13 V, V_{GS} = 0 V, f = 1 MHz	Ciss		3315	4410	pF
Output Capacitance		Coss		1010	1345	pF
Reverse Transfer Capacitance		Crss		168	255	pF
Gate Resistance		R _g		1.2	2.1	Ω
SWITCHING CHARACTERISTICS					-	
Turn-On Delay Time	$V_{DD} = 13 \text{ V}, \text{ I}_{D} = 27 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	td(on)		14	26	ns
Rise Time	$R_{GEN} = 6 \Omega$	t _r		6.8	14	ns
Turn-Off Delay Time		td(off)		34	55	ns
Fall Time		t _f		4.5	10	ns
Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 13 V	Qg		49	68	nC
Total Gate Charge	V_{GS} = 0 V to 4.5 V, V_{DD} = 13 V	Qg		22	31	nC
Gate to Source Gate Charge	I _D = 27 A	Qgs		10.8		nC
Gate to Drain "Miller" Charge	-	Qgd		5.5		nC
DRAIN-SOURCE DIODE CHARACTERISTICS						
Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 27 A (Note 2)	Vsd		0.78	1.2	V
	V _{GS} = 0 V, I _S = 2 A (Note 2)	1 1		0.43	0.8	1
Reverse Recovery Time	I _F = 27 A, di/dt = 300 A/μs	trr		30	48	ns
Reverse Recovery Charge	1	Qrr		29	46	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 53°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 144 mJ is based on starting T_J = 25°C, L = 1 mH, I_{AS} = 17 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 25 A. 4. As an N-ch device, the negative Vgs rating is for lower duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

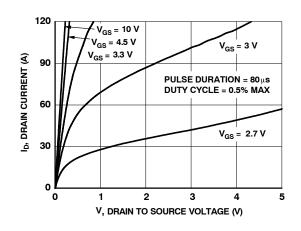


Figure 1. On–Region Characteristics

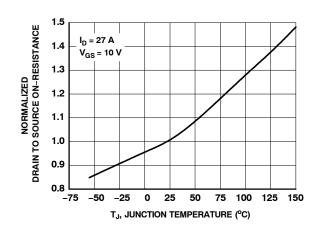


Figure 3. Normalized On-Resistance vs. Junction Temperature

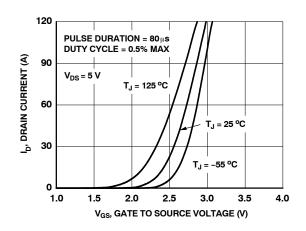


Figure 5. Transfer Characteristics



Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

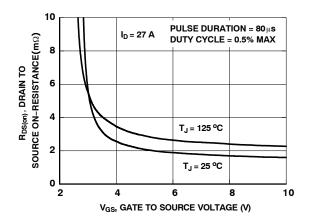


Figure 4. On–Resistance vs. Gate to Source Voltage

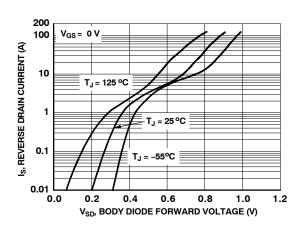


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS (continued)

(T_J = 25° C unless otherwise noted)

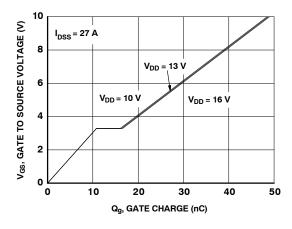


Figure 7. Gate Charge Characteristics

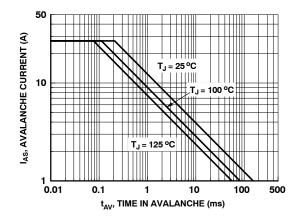


Figure 9. Unclamped Inductive Switching Capability

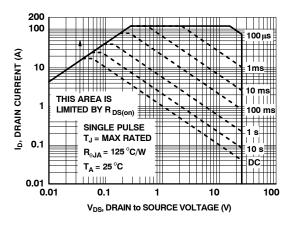


Figure 11. Forward Bias Safe Operating Area

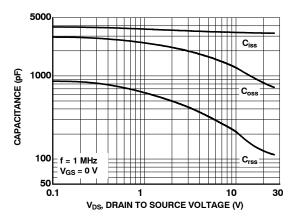


Figure 8. Capacitance vs Drain to Source Voltage

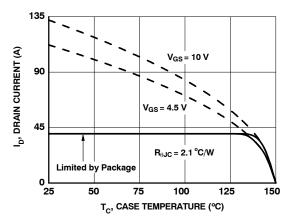
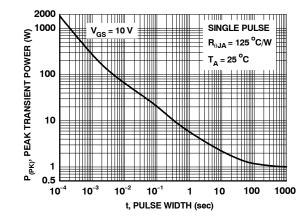



Figure 10. Maximum Continuous Drain Current vs Case Temperature

TYPICAL CHARACTERISTICS (continued)

(T_J = 25° C unless otherwise noted)

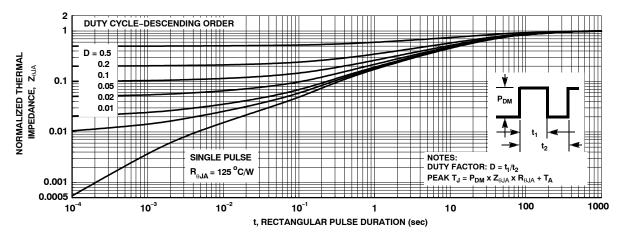


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

SyncFET SCHOTTKY BODY DIODE CHARACTERISTICS

ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMC7570S. Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

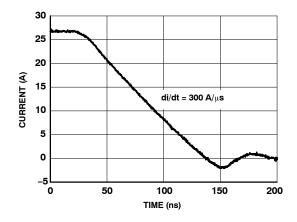


Figure 14. FDMC7570S SyncFET Body Diode Reverse Recovery Characteristic

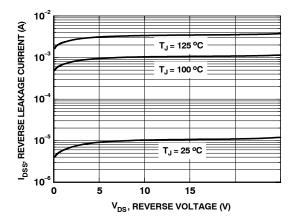


Figure 15. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage

POWERTRENCH is a registered trademark and SyncFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DUDSem

MAX.

1.10

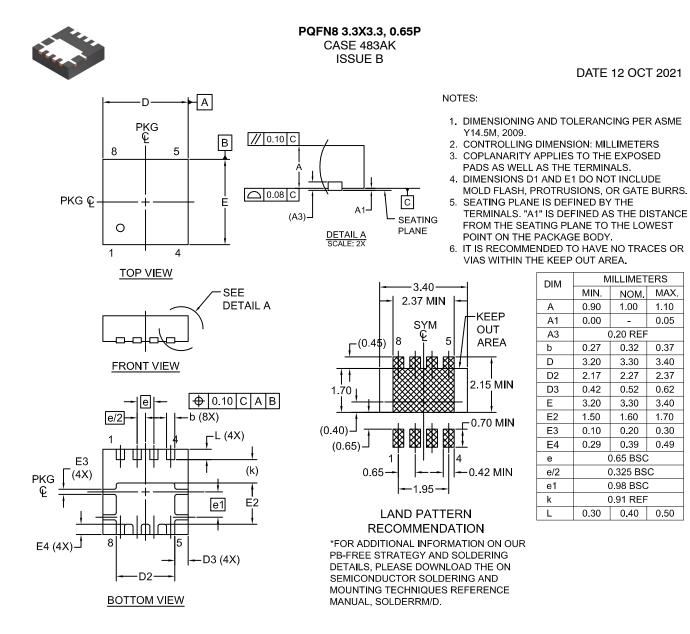
0.05

0.37

3.40

2.37

0.62


3.40

1.70

0.30

0.49

0.50

DOCUMENT NUMBER:	98AON13660G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	RIPTION: PQFN8 3.3X3.3, 0.65P		PAGE 1 OF 1		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its pattent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B