

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

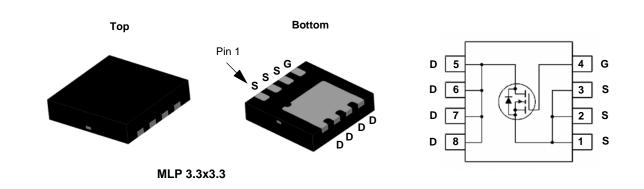
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel Power Trench[®] MOSFET 30 V, 14.8 A, 7.2 m Ω

Features

- Max $r_{DS(on)}$ = 7.2 m Ω at V_{GS} = 10 V, I_D = 14.8 A
- Max $r_{DS(on)}$ = 9.5 m Ω at V_{GS} = 4.5 V, I_D = 12.4 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Application

- DC DC Buck Converters
- Notebook battery power management
- Load switch in Notebook

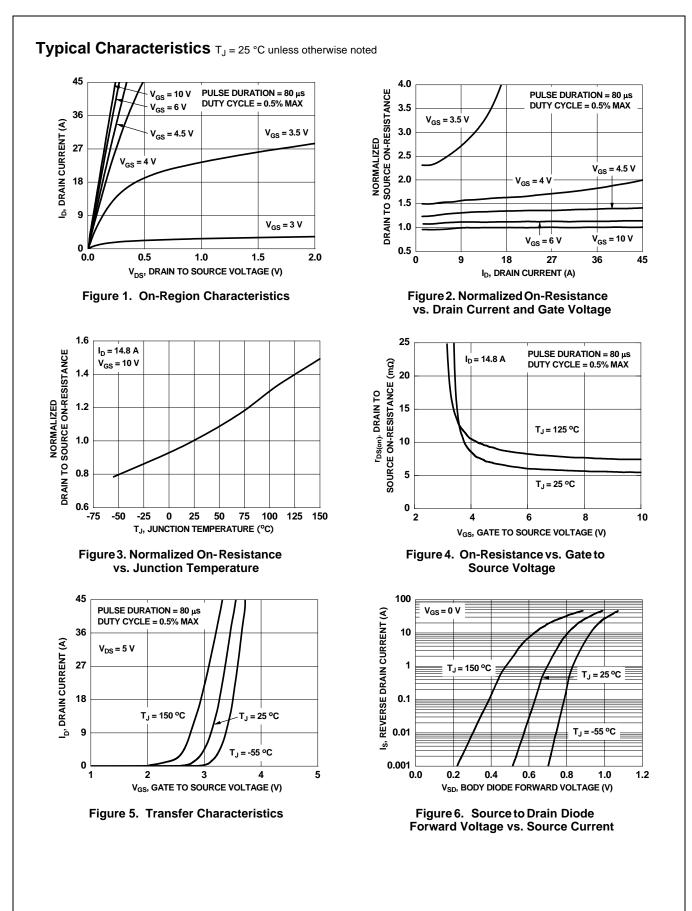
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous	T _C = 25 °C		18		
	-Continuous	T _A = 25 °C	(Note 1a)	14.8	Α	
	-Pulsed			45		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	72	mJ	
P _D	Power Dissipation	T _C = 25 °C		31	W	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

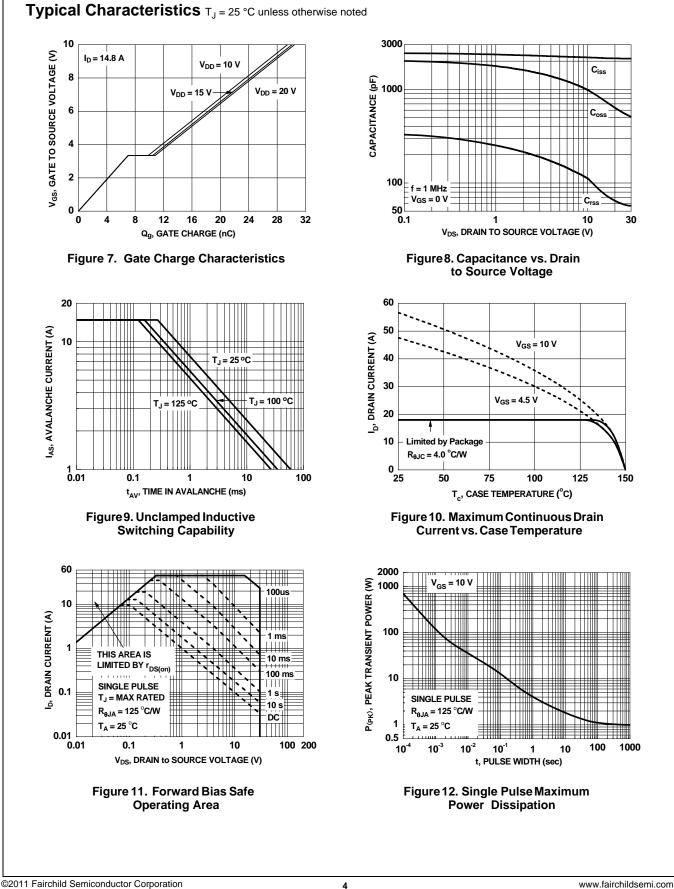
Thermal Characteristics

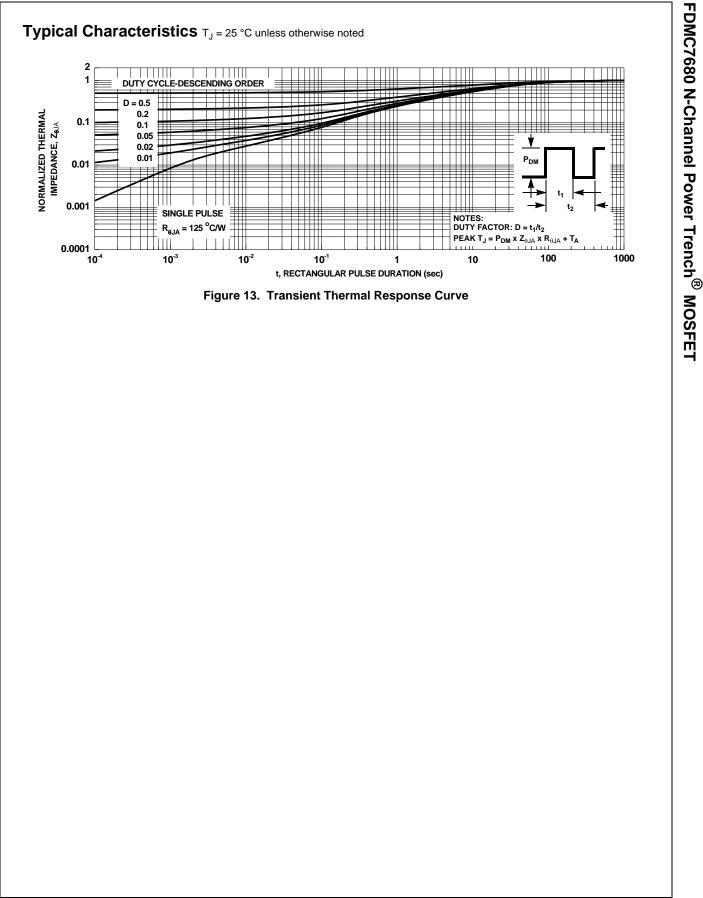
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	4.0	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	C/W

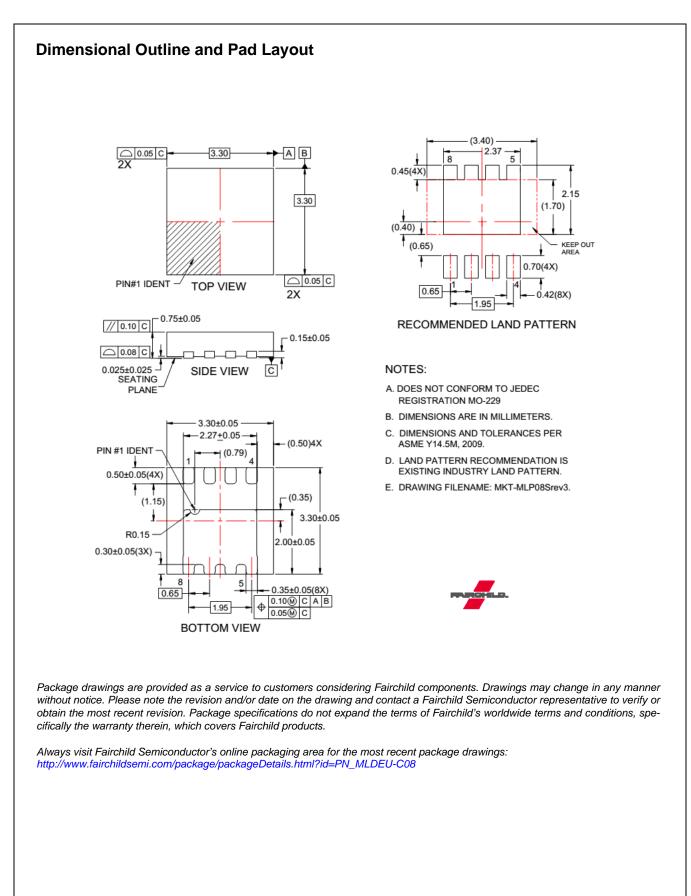
Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7680	FDMC7680	MLP 3.3x3.3	13 "	12 mm	3000 units

June 2014


Off Characteristics BV_{DSS} Drain to Source Breakdown Voltage $I_D = 250 \ \mu$ A, $V_{GS} = 0 \ V$ 30Image: Constraint of Constraint	<i>l</i> lin Typ Max Uni	Min Typ	Test Conditions	Parameter	Symbol
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				cteristics	Off Chara
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30 V	30	I _D = 250 μA, V _{GS} = 0 V	Drain to Source Breakdown Voltage	BV _{DSS}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 mV/	15	$I_D = 250 \ \mu$ A, referenced to 25 °C		ΔBV_{DSS}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	u/			Zero Gate Voltage Drain Current	I _{DSS}
$ \begin{array}{c c c c c c c c c } \hline V_{GS}(th) & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A} & 1.2 & 2.0 & 3.0 \\ \hline \Delta V_{GS}(th) & Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \ \mu\text{A}, referenced to 25 °C & -6 & V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.3 & 9.5 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.4 & 9.2 \\ \hline g_{FS} & Forward Transconductance & V_{DD} = 5 \ V, I_D = 14.8 \ A & 68 & D \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & V_{DS} = 15 \ V, V_{GS} = 0 \ V, I_D = 14.8 \ A & 68 & 0.5 & 1.6 \\ \hline Switching Characteristics \\ \hline Switching Characteristics \\ \hline t_{d(off)} & Turn-On Delay Time & V_{DD} = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V to 10 \ V \\ \hline t_{f} & Fall Time & 3 & 10 \\ \hline t_{ggs} & Total Gate Charage & V_{GS} = 0 \ V to 10 \ V \\ \hline t_{ggs} & Total Gate Charage & V_{GS} = 0 \ V to 10 \ V \\ \hline t_{ggs} & Total Gate Charage & V_{GS} = 0 \ V to 10 \ V \\ \hline t_{ggd} & Gate to Drain "Miller" Charge & V_{GS} = 0 \ V to 14 \ V_{DD} = 15 \ V \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 \ D \\ \hline t_{D} = 14.8 \ A & 7 $			$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	Gate to Source Leakage Current	I _{GSS}
$ \begin{array}{c c c c c c c c } \hline V_{GS(th)} & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A} & 1.2 & 2.0 & 3.0 \\ \hline \Delta V_{GS(th)} & Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \ \mu\text{A}, referenced to 25 °C & -6 & V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.3 & 9.5 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.4 & 9.2 \\ \hline g_{FS} & Forward Transconductance & V_{DD} = 5 \ V, I_D = 14.8 \ A & 68 & D \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & V_{DS} = 15 \ V, V_{GS} = 0 \ V, I_D = 14.8 \ A & 770 & 1020 \\ \hline C_{rss} & Reverse Transfer Capacitance & I & 755 & 115 \\ \hline R_g & Gate Resistance & I & 0.5 & 1.6 \\ \hline Switching Characteristics \\ \hline t_{d(off)} & Turn-On Delay Time & V_{DD} = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_g(rOT) & Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 4 & 10 \\ \hline t_g(rOT) & Turn-Off Delay Time & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 4 & 10 \\ \hline t_g(rOT) & Turn-Off Delay Time & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 7 \ S & 115 \\ \hline Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V & 14 \ 19 \\ \hline t_g(rOT) & Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S & 14 \ 19 \ S & 10 \ V_{DD} = 15 \ V & 14 \ 19 \ S & 10 \ V_{DD} = 14.8 \ A & 7 \ S & 114 \ 19 \ S & 14 \ S & 10 \ S & 14 \ S & 115 \$	I I	I			On Chara
$ \begin{array}{c c c c c c c } \hline \Delta V_{GS}(m) \\ \hline \Delta T_J \\ \hline \hline$.2 2.0 3.0 V	1.2 2.0	$V_{ab} = V_{ab} = 250 \pm 0$		
$ \frac{1}{AT_{J}} \frac{1}{T} emperature Coefficient} \frac{1}{T_{D}} \frac{1}{T} emperature Coefficient} \frac{1}{T_{D}} \frac{1}{T} \frac{1}{T$.2 2.0 3.0 V	1.2 2.0			
	-6 mV/	-6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C 7.4 9.2 g _{FS} Forward Transconductance V _{DD} = 5 V, I _D = 14.8 A 68 Dynamic Characteristics C _{iss} Input Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 2145 2855 Coss Output Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 770 1020 Crss Reverse Transfer Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 775 115 Rg Gate Resistance 0.5 1.6 Switching Characteristics 12 22 td _(on) Turn-On Delay Time V _{DD} = 15 V, I _D = 14.8 A, V _{GS} = 10 V, R _{GEN} = 6 Ω 12 22 tf Fall Time 3 10 30 42 Qg(TOT) Total Gate Charge V _{GS} = 0 V to 10 V V _{GS} = 0 V to 4.5 V V _{DD} = 15 V 14 19 Qgs Total Gate Charge V _{GS} = 0 V to 4.5 V V _{DD} = 15 V 14 19 Qgd Gate to Drain "Miller" Charge V _{DD} = 0 V, I _D = 14.8 A 7 2 2 Drain-Source Diode Char	7.3 9.5 mg	7.3		Static Drain to Source On Resistance	rus(on)
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 2145 2855 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 770 1020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75 115 R_g Gate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A},$ 4 10 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 25 40 t_f Fall Time 3 10 30 42 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 15 \text{ V}$ 14 19 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ 14 19 Drain-Source Diode Characteristics	7.4 9.2	7.4	V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C		03(01)
C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 2145 2855 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 770 1020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75 115 R_g Gate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 4 10 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V to } 10 \text{ V},$ 25 40 t_f Fall Time $0.5 \text{ solution} 0.5 solut$	68 S	68	V _{DD} = 5 V, I _D = 14.8 A	Forward Transconductance	9 _{FS}
CissInput Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ 21452855CossOutput Capacitance $f = 1 \text{ MHz}$ 7701020CrssReverse Transfer Capacitance $f = 1 \text{ MHz}$ 75115RgGate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A}, \text{ V}_{DS} = 10 \text{ V}, \text{ RgEN} = 6 \Omega$ 1222 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V to } 10 \text{ V}, \text{ RgEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}, \text{ I}_D = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A}, \text{ T}, \text{ I}_D = 14.8 \text{ A}, \text{ I}_D$				Characteristics	Dynamic
C_{oss} Output Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 7701020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75115 R_g Gate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{GS} = 0 \text{ V}, R_{GEN} = 6 \Omega$ 1222 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 15 \text{ V}$ 1419 Q_{gd} Gate to Drain "Miller" Charge $I_D = 14.8 \text{ A}$ 71419Drain-Source Diode Characteristics	2145 2855 pF	2145			•
CrssReverse Transfer Capacitance $T = T MHZ$ 75115RgGate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 V, I_D = 14.8 A,$ 410 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 V, R_{GEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 V to 10 V$ $V_{DD} = 15 V$ 1419 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = 0 V to 4.5 V$ $I_D = 14.8 A$ 74Drain-Source Diode Characteristics	770 1020 pF	770			
RgGate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 12 22 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 25 40 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V}$ to $10 \text{ V}, V_{GS} = 0 \text{ V}$ to 10 V 30 42 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V}$ to $10 \text{ V}, V_{DD} = 15 \text{ V}$ 14 19 Q_{gs} Total Gate Charge $V_{GS} = 0 \text{ V}$ to $4.5 \text{ V}, V_{DD} = 15 \text{ V}$ 14 19 Q_{gd} Gate to Drain "Miller" Charge $V_{OS} = 0 \text{ V}, I_S = 14.8 \text{ A}$ 7 4 Drain-Source Diode Characteristics		75	t = 1 MHz		
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 1222 t_r Rise Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 410 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 2540 t_f Fall Time310 $Q_g(TOT)$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 3042 Q_{gs} Total Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V}$ 1419 Q_{gd} Gate to Drain "Miller" Charge $I_D = 14.8 \text{ A}$ 74Drain-Source Diode Characteristics	0.5 1.6 Ω	0.5		Gate Resistance	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L		Characteristics	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 22 ns	12			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \ V \text{ to } 4.5 \ V$ $V_{DD} = 15 \ V$ 1419 Q_{gs} Total Gate Charge $I_D = 14.8 \ A$ 74 Q_{gd} Gate to Drain "Miller" Charge44Drain-Source Diode Characteristics			$V_{CC} = 0 V to 10 V$		4
Q _{gs} Total Gate Charge I _D = 14.8 Å 7 Q _{gd} Gate to Drain "Miller" Charge 4 Drain-Source Diode Characteristics Voc = 0 V. Ic = 14.8 Å Note 2) 0.84 1.2					Q _{g(TOT)}
Qgd Gate to Drain "Miller" Charge 4 Drain-Source Diode Characteristics Voc = 0 V. Ic = 14.8 A (Note 2) 0.84 1.2			$I_{D} = 14.8 \text{ A}$	0	Q
Drain-Source Diode Characteristics				-	
V _{CC} = 0 V, I _C = 14.8 A (Note 2) 0.84 1.2				·	×
$V_{GS} = 0.04$ (Note 2) 0.04 1.2	0.84 1.2	0.84	$V_{} = 0 V_{} = 14.8 A_{}$ (Note 2)		Drain-Sot
V_{SD} Source to Drain Diode Forward Voltage $V_{GS} = 0 V, I_S = 1.9 A$ (Note 2) 0.73 1.2	V			Source to Drain Diode Forward Voltage	V _{SD}
t Reverse Recovery Time 34 54				Reverse Recovery Time	t
t _{rr} Reverse Recovery Time Q _{rr} Reverse Recovery Charge I _F = 14.8 A, di/dt = 100 A/μs 15 24			I _F = 14.8 A, di/dt = 100 A/μs		
NOTES: 1: R_{0JA} is determined with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is d the user's board design.	nteed by design while $R_{\theta CA}$ is determine	uaranteed by design wh	on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is gu	ined with the device mounted on a 1 in ² pad 2 oz copper pa	NOTES: 1: R _{0JA} is detern


00000


000

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK [®]
EfficentMax™
ESBC™

F

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FETBench[™] FPS[™]

F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS[™] e-Series[™] Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

PowerTrench® PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

EGENERAL TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPOWer™ TinyPWM™ TinyWire™ TrinSiC™ TriFault Detect™ TRUECURRENT[®]*

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ **仙童**™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B