$\frac{\text{MOSFET}}{\text{POWERTRENCH}^{\$}} - \text{N-Channel},$ $20 \text{ V, 75 A, 1.3 m}\Omega$

General Description

This N-Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance. This device is well suited for applications where ultra low $r_{DS(on)}$ is required in small spaces such as High performance VRM, POL and Oring functions.

Features

- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$
- Max $r_{DS(on)} = 1.8 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 25 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- These Devices are Pb-Free and are RoHS Compliant

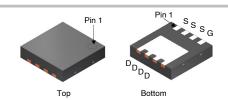
Applications

- DC DC Buck Converters
- Point of Load
- High Efficiency Load Switch and Low Side Switching
- Oring FET

MOSFET MAXIMUM RATINGS (T_A = 25°C Unless Otherwise Noted)

Symbol	Parameter	Ratings	Units
VDS	Drain to Source Voltage	30	V
Vgs	Gate to Source Volage (Note 4)	±20	V
I _D	$ \begin{array}{lll} \text{Drain Current} \\ -\text{Continuous (Package limited)} & T_\text{C} = 25^\circ\text{C} \\ -\text{Continuous (Silicon limited)} & T_\text{C} = 25^\circ\text{C} \\ -\text{Continuous} & T_\text{A} = 25^\circ\text{C (Note 1a)} \\ -\text{Pulsed} & \end{array} $	75 166 30 120	Α
Eas	Single Pulse Avalance Energy (Note 3)	153	mJ
P _D	Power Dissipation T _C = 25°C	54	W
	Power Dissipation T _A = 25°C (Note 1a)	2.4	
TJ, TSTG	Operating and Storage Junction Temperature -55 to Range +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rejc	Thermal Resistance, Junction to Case	1.3	°C/W
Rеja	Thermal Resistance, Junction to Ambient (Note 1a)	53	°C/W

ON Semiconductor®

www.onsemi.com

PQFN8 3.3x3.3, 0.65P CASE 483AW Power 33

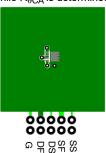
MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code FDMC8010 = Specific Device Code

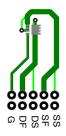
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8010	FDMC8010	Power 33	13"	12 mm	3000 Units

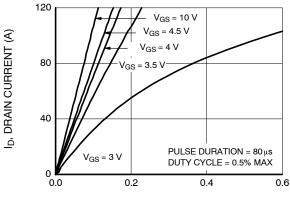
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	_D = 1 mA, referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ON CHARACT	TERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.5	2.5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 1 mA, referenced to 25°C		-5		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 30 A		0.9	1.3	mΩ
		V _{GS} = 4.5 V, I _D = 25 A		1.3	1.8	
		V _{GS} = 10 V, I _D = 30 A, T _J = 125°C		1.3	2]
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 30 A		188		S
DYNAMIC CH	ARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		4405	5860	pF
C _{oss}	Output Capacitance	f = 1 MHz		1570	2090	pF
C _{rss}	Reverse Transfer Capacitance			167	250	pF
R _g	Gate Resistance	0		0.5	1.25	Ω
SWITCHING C	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 30 \text{ A}, V_{GS} = 10 \text{ V},$		15	27	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$		7.5	15	ns
t _{d(off)}	Turn-Off Delay Time			40	64	ns
t _f	Fall Time			5.3	11	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V V _{DD} = 15 V		67	94	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 30 \text{ A}$		32	45	nC
Qgs	Gate to Source Charge			10		nC
Qgd	Gate to Drain "Miller" Charge			9.5		nC
DRAIN-SOUR	ICE DIODE CHARACTERISTICS			•		
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)		0.6	1.2	V
		V _{GS} = 0 V, I _S = 30 A (Note 2)		0.7	1.2	1
t _{rr}	Reverse Recovery Time	I _F = 30 A, di/dt = 100 A/μs		49	78	ns
Q _{rr}	Reverse Recovery Charge			29	46	nC

NOTES:

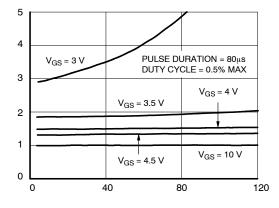
1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 53 °C/W when mounted on a 1 in² pad of 2 oz copper.



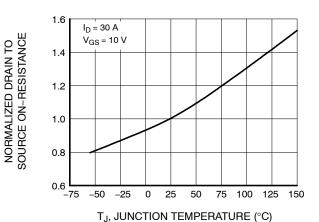
b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %.
 E_{AS} of 153 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 32 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 47 A.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)


NORMALIZED DRAIN TO SOURCE ON-RESISTANCE

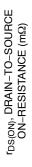
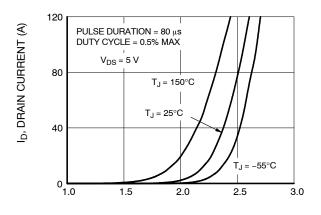

ID, DRAIN CURRENT (A)

Figure 1. On-Region Characteristics

Figure 2. Noormalized On-Resistance vs **Drain Current and Gate Voltage**

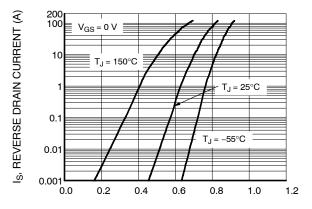
Junction Temperature

0


 $T_J = 25^{\circ}C$

V_{GS}, GATE TO SOURCE VOLTAGE (V)

Figure 3. Normalized On Resistance vs


Figure 4. On-Resistance vs Gate to Source Voltage

6

V_{GS}, GATE TO SOURCE VOLTAGE (V)

Figure 5. Transfer Characteristics

V_{SD}, BODY DIODE FORWARD VOLTAGE (V)

Figure 6. Source to Drain Diode Forward **Voltage vs Source Current**

TYPICAL CHARACTERISTICS (continued)

T_J = 25°C Unless Otherwise Noted

CAPACITANCE (pF)

ID, DRAIN CURRENT (A)

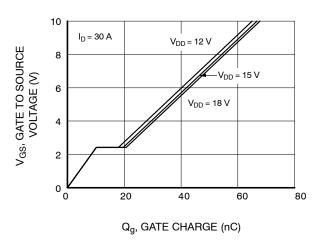


Figure 7. Gate Charge Characteristics

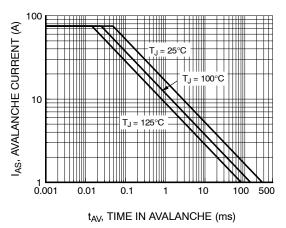
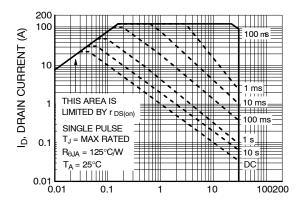
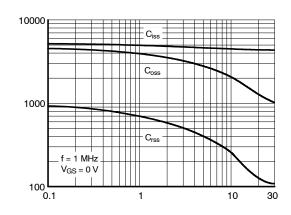




Figure 9. Unclamped Inductive Switching Capability

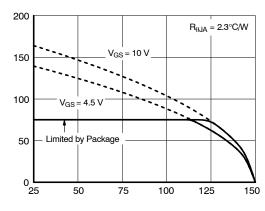

V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 11. Forward Bias Safe Operating Area

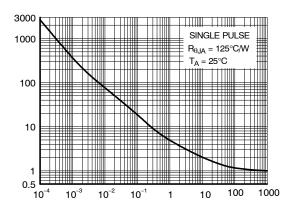

V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 8. Capacitance vs Drain to Source Voltage

T_C, CASE TEMPERATURE (°C)

Figure 10. Maximum Continuous Drain Current vs Case Temperature

t, PULSE WIDTH (sec)

Figure 12. Single Pulse Maximum Power Dissipation

P_(PK), PEAK TRANSIENT POWER (W)

TYPICAL CHARACTERISTICS (continued)

T_J = 25°C Unless Otherwise Noted

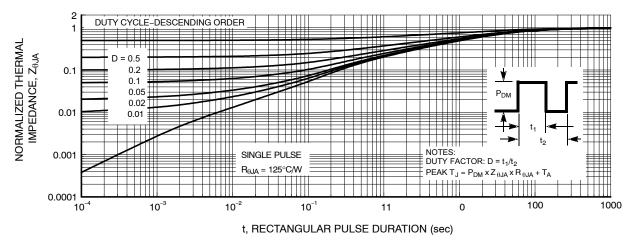
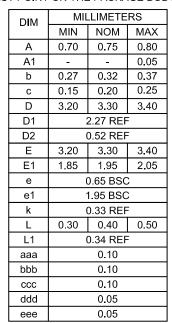
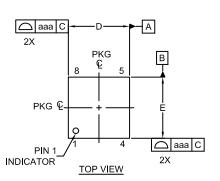


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

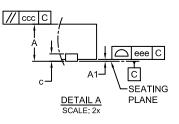
POWERTRENCH are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

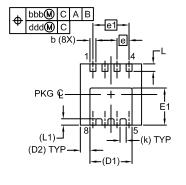


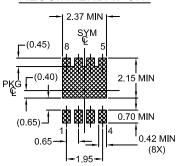

WDFN8 3.3X3.3, 0.65PCASE 483AW ISSUE A

DATE 10 SEP 2019

NOTES:


- 1. CONTROLLING DIMENSION: MILLIMETERS.
- 2. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. 'A1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.




FRONT VIEW

BOTTOM VIEW

LAND PATTERN RECOMMENDATION*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

Y = Year

WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER: 98AON13672G Electronic versions are uncontrolled except when acception printed versions are uncontrolled except when stamped except when exce					
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B