MOSFET – N-Channel, POWERTRENCH[®], Dual

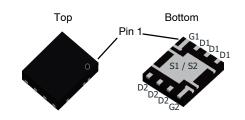
30 V, 167 A, 1.0 m Ω

General Description

This package integrates two N-Channel devices connected internally in common-source configuration. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint (5 x 6 mm) for higher power density.

Features

- Common Source Configuration to Eliminate PCB Routing
- Large Source Pad on Bottom of Package for Enhanced Thermals
- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 38 \text{ A}$
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 33 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL Tested
- This Device is Pb-Free and is RoHS Compliant


Applications

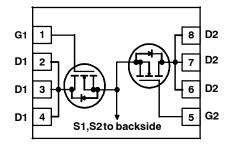
- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches

ON Semiconductor®

www.onsemi.com

PQFN8 5X6, 1.27P CASE 483AS

MARKING DIAGRAM


\$Y&Z&3&K FDMD 8630

&Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FDMD8630 = Specific Device Code

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS T_A = 25°C Unless Otherwise Noted

Symbol	Parameter	Ratings	Units
Vps	Drain to Source Voltage	30	V
Vgs	Gate to Source Voltage	±20	V
I _D	Drain Current -Continuous - T _C = 25°C (Note 5)	167	А
	-Continuous - T _C =100°C (Note 5)	106	
	-Continuous - T _A = 25°C (Note 1a)	38	
	-Pulsed - (Note 4)	1178	
Eas	Single Pulse Avalanche Energy (Note 3)	726	mJ
P _D	Power Dissipation for Single Operation T _C = 25 °C 43		W
. 0	Power Dissipation for Single Operation T _A = 25 °C (Note 1a)	2.3]
ТJ, Тsтg	Operating and Storage Junction Temperature Range	-55 to +150	°C

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
RеJC	Thermal Resistance, Junction to Case	sistance, Junction to Case 2.9	
RеJA	Thermal Resistance, Junction to Ambient (Note 1a)	55	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMD8630	FDMD8630	Power 5 x 6	13"	12 mm	3000 Units

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ Unless Otherwise Noted

RISTICS In to Source Breakdown Voltage akdown Voltage Temperature fficient In Gate Voltage Drain Current In the to Source Leakage Current, avard RISTICS In to Source Threshold Voltage	I_D = 250 μA, V_{GS} = 0 V I_D = 250 μA, referenced to 25°C V_{DS} = 24 V, V_{GS} = 0 V V_{GS} = 20 V, V_{DS} = 0 V	30	15	1 100	V mV/°C μA nA
akdown Voltage Temperature fficient Gate Voltage Drain Current to Source Leakage Current, vard	I_D = 250 μ A, referenced to 25°C V_{DS} = 24 V, V_{GS} = 0 V V_{GS} = 20 V, V_{DS} = 0 V		15		mV/°C μA
fficient Di Gate Voltage Drain Current De to Source Leakage Current, Devard	V _{DS} = 24 V, V _{GS} = 0 V V _{GS} = 20 V, V _{DS} = 0 V		15		μΑ
e to Source Leakage Current, vard	V _{GS} = 20 V, V _{DS} = 0 V				<u>'</u>
vard RISTICS				100	nA
	Vos = Vps. Ip = 250 µA		•		
e to Source Threshold Voltage	Vce = Vpe, Ip = 250 µA				
	1 GS 1 DS, D = 0 1 1 1	1.0	1.6	3.0	V
e to Source Threshold Voltage perature Coefficient	I _D = 250 μA, referenced to 25°C		-6		mV/°C
ic Drain to Source On Resistance	V _{GS} = 10 V, I _D = 38 A		0.6	1.0	mΩ
	V _{GS} = 4.5 V, I _D = 33 A		0.8	1.3	
	$V_{GS} = 4.5 \text{ V}, I_D = 33 \text{ A}, T_J = 125^{\circ}\text{C}$		0.9	1.5	
vard Transconductance	V _{DD} = 5 V, I _D = 38 A		281		S
ACTERISTICS		•	•	•	•
t Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		7090	9930	pF
out Capacitance	1		2025	2835	pF
erse Transfer Capacitance	1		212	300	pF
Resistance	1	0.1	1.9	3.8	Ω
1	vard Transconductance ACTERISTICS t Capacitance out Capacitance erse Transfer Capacitance	$V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}$ $V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}$ $V_{DD} = 5 \text{ V, } I_D = 38 \text{ A}$ ACTERISTICS It Capacitance Out Capacitance Prese Transfer Capacitance Prese Resistance	$V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}$ $V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}$ $V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}$ $V_{DD} = 5 \text{ V, } I_D = 38 \text{ A}$ $ACTERISTICS$ It Capacitance $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ $V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$	$V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A} \\ V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A} \\ V_{GS} = 4.5 \text{ V, } I_D = 33 \text{ A}, T_J = 125^{\circ}\text{C} \\ V_{DD} = 5 \text{ V, } I_D = 38 \text{ A} \\ \text{ACTERISTICS} \\ \text{It Capacitance} \\ \text{out Capacitance} \\ \text{erse Transfer Capacitance} \\ \text{erse Transfer Capacitance} \\ \text{erse Resistance} \\ 0.1 \\ 1.9 \\ \text{Out Description of the capacitance} \\ \text{erse Transfer Capacitance} \\ erse T$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units		
SWITCHIN	SWITCHING CHARACTERISTICS								
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 38 A			14	26	ns		
t _r	Rise Time	$V_{GS} = 10 \text{ V, } R_{GEN} = 6 \Omega$			15	27	ns		
t _{d(off)}	Turn-Off Delay Time				66	105	ns		
t _f	Fall Time]			24	39	ns		
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V	V _{DD} = 15 V I _D = 38 A		97	142	nC		
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 4.5 V	- ID - 35 / C		46	74	nC		
Q _{gs}	Gate to Source Gate Charge				17		nC		
Q_{gd}	Gate to Drain "Miller" Charge	1			12		nC		
DRAIN-SO	DRAIN-SOURCE DIODE CHARACTERISTICS								
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 38 A (Note 2)			0.8	1.3	V		
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)			0.7	1.2	V		
t _{rr}	Reverse Recovery Time	I _F = 38 A, di/dt = 100 A/μs			64	103	ns		
Q_{rr}	Reverse Recovery Charge				56	90	nC		

^{1.} $R_{\theta JA}$ is determined with the device mounted on a 1 in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 55°C/W when mounted on a 1 in² padof 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 726 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 22 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 70 A.
 Pulsed Id please refer to Fig 11 SOA graph for more details.
 Computed continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted

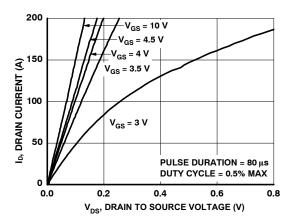


Figure 1. On-Region Characteristics

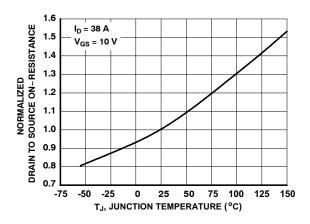


Figure 3. Normalized On Resistance vs Junction Temperature

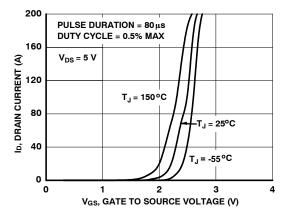


Figure 5. Transfer Characteristics

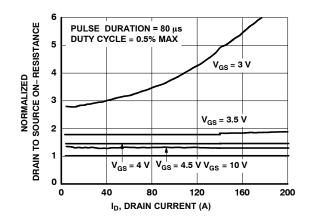


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

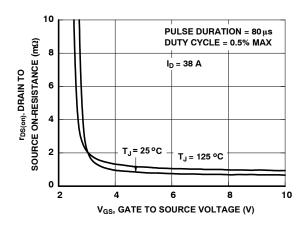


Figure 4. On-Resistance vs Gate to Source Voltage

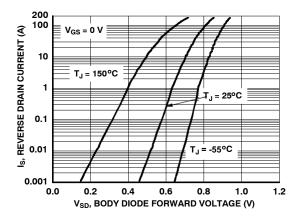


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted (continued)

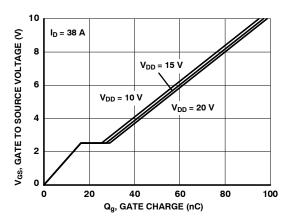


Figure 7. Gate Charge Characteristics

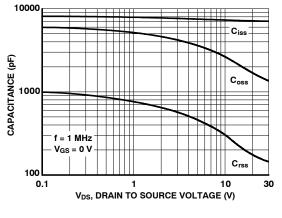


Figure 8. Capacitance vs Drain to Source Voltage

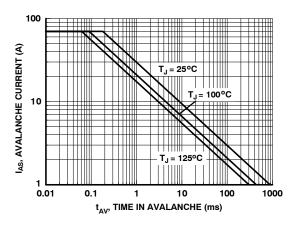


Figure 9. Unclamped Inductive Switching Capability

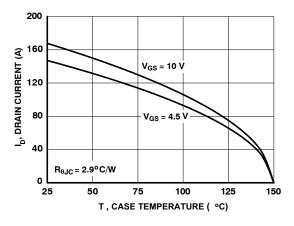


Figure 10. Maximum Continuous Drain Current vs Case Temperature

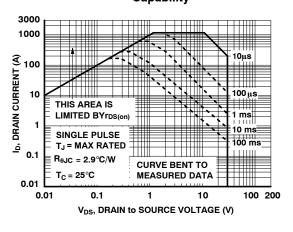


Figure 11. Forward Bias Safe Operating Area

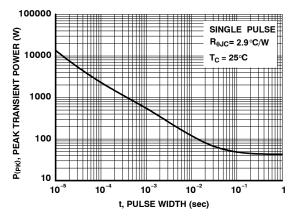


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted (continued)

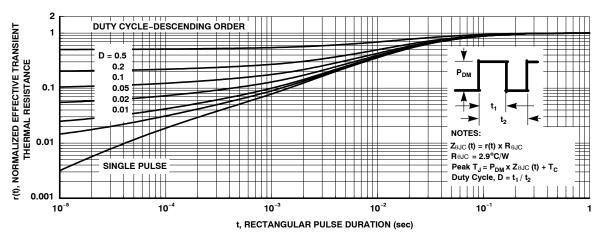
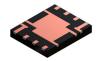
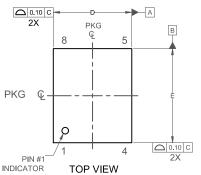
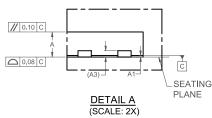



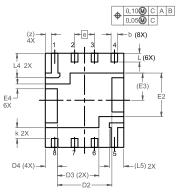
Figure 13. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

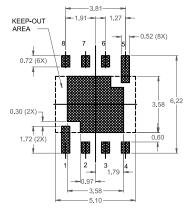

PQFN8 5X6, 1.27P CASE 483AS **ISSUE A**


DATE 17 MAY 2021

NOTES:


- A) PACKAGE REFERENCE:
- TO JEDEC REGISTRATION, MO-240B, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP-OUT AREA

ДΙΜ	MILLIMETERS			
2.101	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	
A1	0.00	-	0.05	
b	0.37	0.42	0.47	
A3	Ī	0.20 REF		
D	4.90	5.00	5.10	
D2	3.38	3.48	3.58	
D3	2.55	2.65	2.75	
D4	0.66	0.76	0.86	
Е	5.90	6.00	6.10	
E2	2.68	2.78	2.88	
E3	1.74 REF			
E4	0.25	0.30	0.35	
е	1.27 BSC			
k	0.60	0.70	0.80	
L	0.46	0.56	0.66	
L4	1.46	1.56	1.66	
L5	0.82	0.92	1.02	
Z	0.39 REF			



BOTTOM VIEW

RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13667G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B