MOSFET, N-Channel, POWERTRENCH®

Q1: 30 V, 66 A, 4 m Ω Q2: 30 V, 42 A, 5.5 m Ω

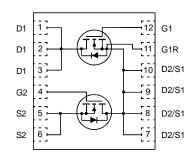
General Description

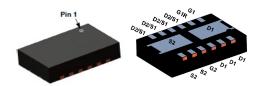
This devices utilizes two optimized N-ch FETs in a dual 3.3 x 5 mm thermally enhanced power package. The HS Source and LS drain are internally connected providing a low source inductance package, helping to provide the best FOM.

Features

Q1: N-Channel

- Max $r_{DS(on)} = 4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 19 \text{ A}$
- Max $r_{DS(on)} = 5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 17 \text{ A}$
- Max $r_{DS(on)} = 6.5 \text{ m}\Omega$ at $V_{GS} = 3.8 \text{ V}$, $I_D = 15 \text{ A}$
- Max $r_{DS(on)}$ = 8.3 m Ω at V_{GS} = 3.5 V, I_D = 14 A Q2: N–Channel
- Max $r_{DS(on)} = 5.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 17 \text{ A}$
- Max $r_{DS(on)} = 6.5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$
- Max $r_{DS(on)} = 9 \text{ m}\Omega$ at $V_{GS} = 3.8 \text{ V}$, $I_D = 13 \text{ A}$
- Max $r_{DS(on)} = 12 \text{ m}\Omega$ at $V_{GS} = 3.5 \text{ V}$, $I_D = 12 \text{ A}$
- Ideal for Flexible Layout in Primary Side of Bridge Topology
- 100% UIL Tested
- Kelvin High Side MOSFET Drive Pin-out Capability
- This Device is Pb–Free and is RoHS Compliant


Applications


- Computing
- Buck, Boost and Buck/Boost Applications
- General Purpose POL

ON Semiconductor®

www.onsemi.com

Power 3.3 x 5

PQFN12 3.3X5, 0.65P CASE 483BN

MARKING DIAGRAM

\$Y&Z&3&K 8900

\$Y	= ON Semiconductor Logo
&Z	= Assembly Plant Code
&3	= Numeric Date Code
&K	= Lot Code
8900	= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise noted)

Symbol	Parameter				Q1	Q2	Units
VDS	Drain to Source Voltage				30	30	V
Vgs	Gate to Source \	Gate to Source Voltage				±12	V
I _D	Drain Current	-Continuous	T _C = 25°C	(Note 5)	66	42	А
		-Continuous	T _C = 100°C	(Note 5)	42	26	
		-Continuous	T _A = 25°C	(Note 1a)	19	17	
		-Pulsed		(Note 4)	280	210	
Eas	Single Pulse Ava	alanche Energy		(Note 3)	73	54	mJ
P _D	Power Dissipation	n	T _C = 25°C		27	15	W
. п	Power Dissipation	n	T _A = 25°C	(Note 1a)	2.1		╗ "
TJ, TSTG	Operating and S	torage Junction Tem	perature Range		-55 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

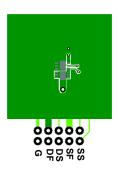
Symbol	Parameter		Ratings	Unit
Rejc	Thermal Resistance, Junction to Case	4.7	8.4	0000
RθJA	Thermal Resistance, Junction to Ambient (Note 1a)	60		°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
8900	FDMD8900	PQFN12 3.3x5, 0.65P (Pb-Free)	3000 units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Test Co	onditions	Туре	Min.	Тур.	Max.	Units
OFF CHAP	RACTERISTICS				•			
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 \ I_D = 250 \mu A, V_{GS} = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C I_D = 250 μA, referenced to 25°C			14 13			mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V V _{DS} = 24 V, V _{GS} = 0 V		Q1 Q2			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$ $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$		Q1 Q2			±100 ±100	nA
ON CHAR	ACTERISTICS				•		•	•
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu$ $V_{GS} = V_{DS}, I_D = 250 \mu$	A A	Q1 Q2	0.8 1	1.3 1.4	2.5 2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient		I _D = 250 mA, referenced to 25°C I _D = 250 mA, referenced to 25°C			-4 -4		mV/°C
r _{DS(on)} Drain to Source On Resistance		$V_{GS} = 10 \text{ V}, I_{D} = 19 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_{D} = 17 \text{ A}$ $V_{GS} = 3.8 \text{ V}, I_{D} = 15 \text{ A}$ $V_{GS} = 3.5 \text{ V}, I_{D} = 14 \text{ A}$ $V_{GS} = 10 \text{ V}, I_{D} = 19 \text{ A}, T_{J} = 125^{\circ}\text{C}$				3.4 4 4.3 4.6 4.6	4 5 6.5 8.3 6	mΩ
		$V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$ $V_{GS} = 3.8 \text{ V}, I_D = 13 \text{ A}$ $V_{GS} = 3.5 \text{ V}, I_D = 12 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}, T_J = 125^{\circ}\text{C}$		Q2		4.5 5.4 6 6.6 5.8	5.5 6.5 9 12 6.9	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 19 A V _{DS} = 5 V, I _D = 17 A		Q1 Q2		86 80		S
OYNAMIC	CHARACTERISTICS							
C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V	Q1 Q2		1735 1210	2605 1815	pF	
C _{oss}	Output Capacitance	Q2: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		Q1 Q2		462 356	695 535	pF
C _{rss}	Reverse Transfer Capacitance			Q1 Q2		47 52	75 80	pF
R _g	Gate Resistance			Q1 Q2		0.8 1.9		W
WITCHIN	G CHARACTERISTICS							
t _{d(on)}	Turn-On Delay Time	Q1: V _{DD} = 15 V, I _D = 19 A,	R _{GEN} = 6 Ω	Q1 Q2		8.7 7.1	17 14	ns
t _r	Rise Time	Q2: V _{DD} = 15 V, I _D = 17 A,	$R_{GEN} = 6 \Omega$	Q1 Q2		2.3 2	10 10	ns
t _{d(off)}	Turn-Off Delay Time			Q1 Q2		25 22	40 35	ns
	Fall Time			Q1 Q2		2.4 2.3	10 10	ns
t _f			Q1:	Q1		25	35 27	nC
t _f	Total Gate Charge	V _{GS} = 0 V to 10 V	$V_{DD} = 15 \text{ V}, I_D = 19 \text{ A}$	Q2		19	21	
	Total Gate Charge Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$	$V_{DD} = 15 \text{ V}, I_{D} = 19 \text{ A}$ Q2:	Q2 Q1 Q2		19 12 8.8	17 12	nC
Qg	-		V _{DD} = 15 V, I _D = 19 A	Q1		12	17	nC nC

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units	
DRAIN-SO	DRAIN-SOURCE DIODE CHARACTERISTICS T _J = 25°C unless otherwise noted.							
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V, } I_{S} = 19 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V, } I_{S} = 17 \text{ A}$ (Note 2)	Q1 Q2		0.8 0.8	1.2 1.2	V	
trr	Reverse Recovery Time	Q1: $I_F = 19 \text{ A}, \Delta i/\Delta t = 100 \text{ A/ms}$	Q1 Q2		26 22	42 35	ns	
Q _{rr}	Reverse Recovery Charge	Q2: $I_F = 17 \text{ A}, \Delta i/\Delta t = 100 \text{ A/ms}$	Q1 Q2		10 7.8	20 16	nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 60 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 130 °C/W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %.
 Q1: E_{AS} of 73 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 25 A. Q2: E_{AS} of 54 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 20 A.
 Pulse Id refers to Figure "Forward Bias Safe Operation Area".
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (Q1 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

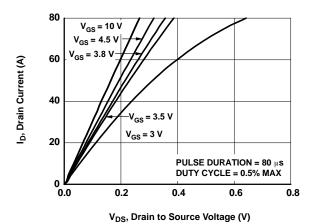


Figure 1. On-Region Characteristics

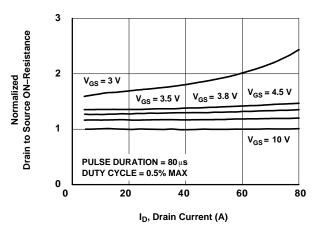


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

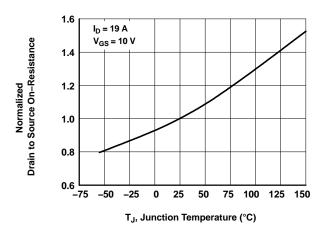


Figure 3. Normalized On Resistance vs. Junction Temperature

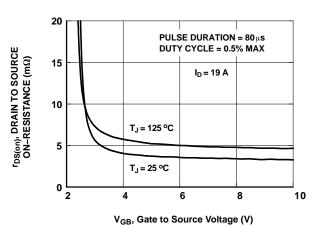


Figure 4. On Resistance vs. Gate to Source Voltage

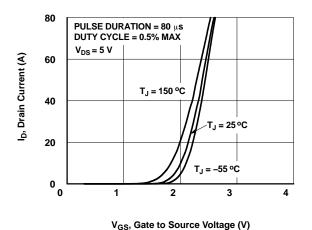
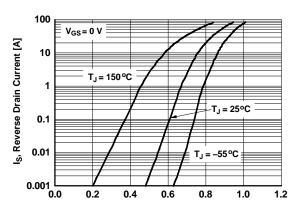



Figure 5. Transfer Characteristics

V_{SD}, Body Diode Forward Voltage (V)

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

10000

TYPICAL CHARACTERISTICS (Q1 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

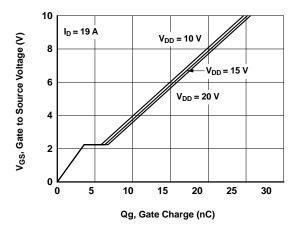


Figure 7. Gate Charge Characteristics

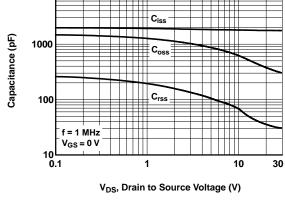


Figure 8. Capacitance vs. Drain to Source Voltage

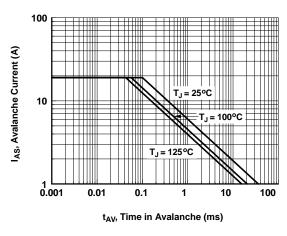


Figure 9. Unclamped Inductive Switching Capability

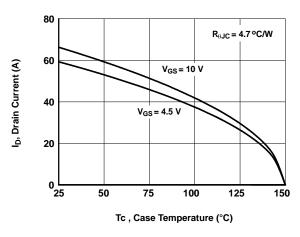


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

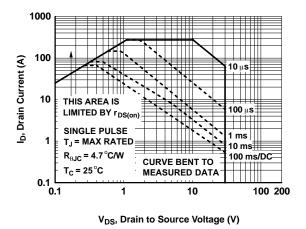


Figure 11. Forward Bias Safe Operating Area

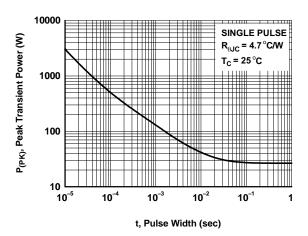


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

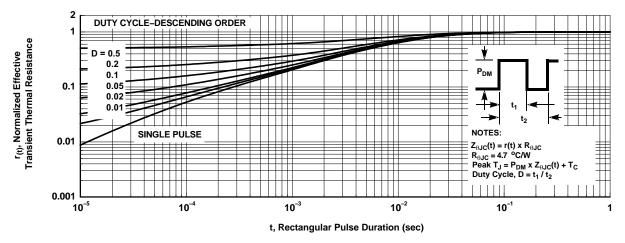


Figure 13. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

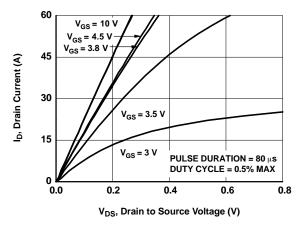


Figure 14. On-Region Characteristics

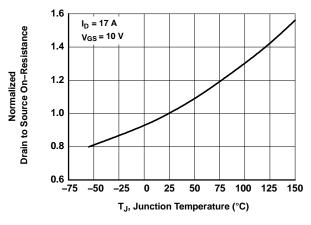


Figure 16. Normalized On–Resistance vs. Junction Temperature

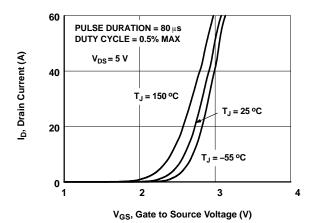


Figure 18. Transfer Characteristics

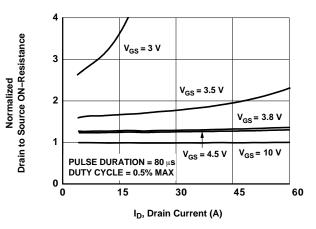


Figure 15. Normalized On–Resistance vs. Drain Current and Gate Voltage

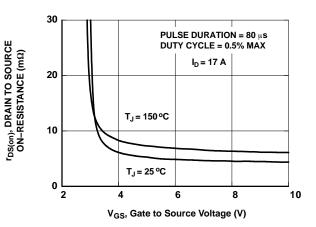


Figure 17. On Resistance vs. Gate to Source Voltage

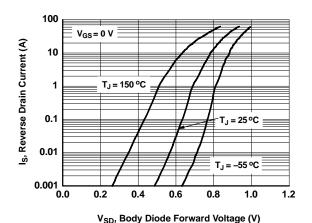


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

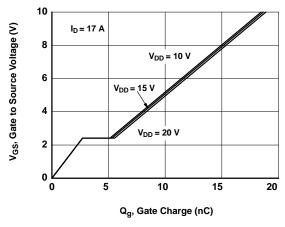


Figure 20. Gate Charge Characteristics

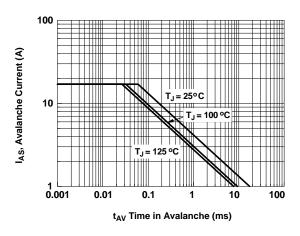


Figure 22. Unclamped Inductive Switching Capability

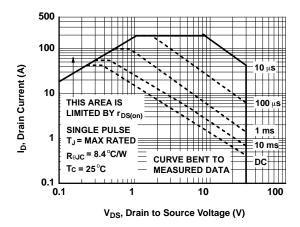
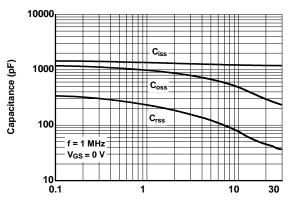



Figure 24. Forward Bias Safe Operating Area

V_{DS}, Drain to Source Voltage (A)

Figure 21. Capacitance vs. Drain to Source Voltage

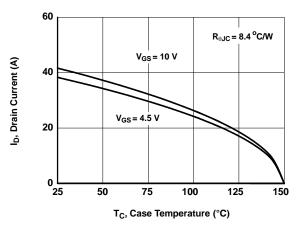


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

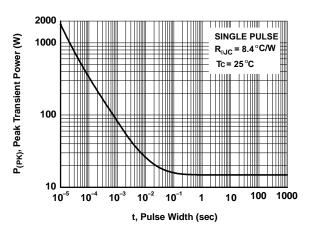


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

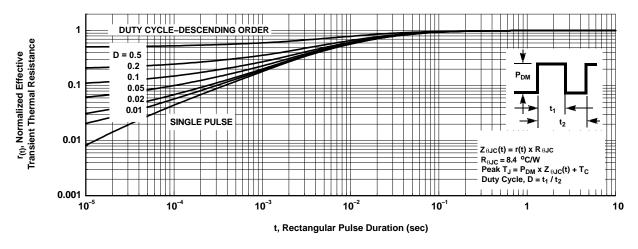


Figure 26. Junction -to-Case Transient Thermal Response Curve

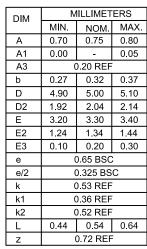
POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

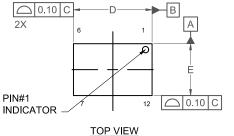
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

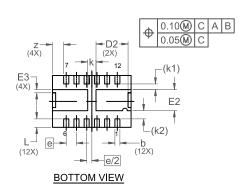
PQFN12 3.3X5, 0.65PCASE 483BN ISSUE A

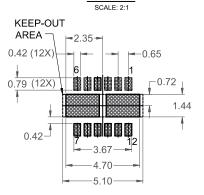
// 0.10 C


0.08 C


(A3)

DATE 26 AUG 2021


NOTES: UNLESS OTHERWISE SPECIFIED


- A) THIS PACKAGE CONFORMS TO JEDEC MO-240, VARIATION BA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

Α1

DETAIL 'A'

Ċ

PLANE

SEATING

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13670G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PQFN12 3.3X5, 0.65P		PAGE 1 OF 1			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B