

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Features

- Low Power Loss GreenBridge ${ }^{\text {TM }}$ Replaces Diode Bridge
- Self Driving Circuitry for MOSFETs
- Low $\mathrm{r}_{\mathrm{DS}(\text { on })} 80 \mathrm{~V}$ Rated MOSFETs
- Maximizing Available Power and Voltage
- Eliminating Thermal Design Problems
- IEEE802.3at Compatible
- Meet Detection and Classification Requirement
- Work with 2 and 4-pair Architecture
- Small Backfeed Voltage

■ Compact MLP 4.5x5 Package

Applications

■ Power over Ethernet (PoE) Power Device (PD)

- IP Phones
- Network Cameras
- Wireless Access Points
- Thin Clients
- Microcell
- Femtocell

General Description

FDMQ8205 is GreenBridge ${ }^{T M} 2$ series of quad MOSFETs for a bridge application so that the input will be insensitive to the polarity of a power source coupled to the device. Many known bridge rectifier circuits can be configured using typical diodes. The conventional diode bridge has relatively high power loss that is undesirable in many applications. Especially, Power over Ethernet (PoE) Power Device (PD) application requires high-efficiency bridges because it should be operated with the limited power delivered from Power Source Equipment (PSE) which is classified by IEEE802.3at. FDMQ8205 is configured with low $r_{\text {DS(on) }}$ dual P-ch MOSFETs and N-ch MOSFETs so that it can reduce the power loss caused by the voltage drop, compared to the conventional diode bridge. FDMQ8205 enables the application to maximize the available power and voltage and to eliminate the thermal design problems in PoE PD applications.

FDMQ8205 GreenBridge ${ }^{\text {TM }} 2$ is compatible with IEEE802.3at PoE standard by not compromising detection and classification requirement as well as small backfeed voltage.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMQ8205	FDMQ8205	MLP4.5x5	13 "	12 mm	3000 units

Typical Application

Figure 1. Typical Application of Power Device for Power over Ethernet

Block Diagram

Figure 2. Block Diagram

Pin Configuration

Figure 3. Pin Assignment (Bottom View)

Pin Descriptions

Pin Number	Name	Description
1	G1	Gate of Q1 N-ch MOSFET
4	G2	Gate of Q2 P-ch MOSFET
9	G3	Gate of Q3 P-ch MOSFET
12	G4	Gate of Q4 N-ch MOSFET
13,14	INPUT1	Input1 of GreenBridge ${ }^{\text {TM }}$
15,16	INPUT2	Input2 of GreenBridge ${ }^{\text {TM }}$
$2,3,11,10$	OUTN	Negative Output of GreenBridge $^{\text {TM }}$
$5,6,7,8$	OUTP	Positive Output of GreenBridge ${ }^{\text {TM }}$

Notes:

1. Show the feature that provides orientation or pin 1 location.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

			Min.	Max.	Units
INPUT1, INPUT2 to OUTN				80	V
OUTP to INPUT1, INPUT2				80	V
INPUT1 to INPUT2				80	V
INPUT2 to INPUT1				80	V
OUTP to OUTN				80	V
G1, G2, G3, G4 to OUTN				70	V
OUTP to G1, G2, G3, G4				70	V
$\mathrm{V}_{\text {G_TRANSIENT }}$	Transient Gate Voltage, Puls Duty Cycle < 0.	$\text { th < } 200 \mu \mathrm{~s} \text {, }$		100	V
Continuous $\mathrm{I}_{\text {INPUT }}$ (GreenBridge ${ }^{\text {TM }}$ Current, Q1+Q3 or Q2+Q4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 2a)		3.0	A
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 2b)		1.7	A
Pulsed $\mathrm{I}_{\text {INPUT }}(\mathrm{Q} 1+\mathrm{Q} 3$ or Q2+Q4)	Pulse Width < $300 \mu \mathrm{~s}$, Duty C	2\% (Note 3)		58	A
$\mathrm{P}_{\mathrm{D}}($ Power Dissipation, Q1+Q3 or Q2+Q4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 2a)		2.5	W
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 2b)		0.78	W
Max Junction Temperature				150	${ }^{\circ} \mathrm{C}$

Notes:
2. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

3. Pulse Id measured at $\mathrm{td}<=300 \mu \mathrm{~s}$, refer to SOA graph for more details.

Thermal Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	
$\mathrm{R}_{\text {ӨJC }}$	Thermal Resistance, Junction to Case		5.1			
$\mathrm{R}_{\text {ӨJA }}$	Thermal Resistance, Junction to Ambient	(Note 2a)		50		
$\mathrm{R}_{\theta \text { JA }}$	Thermal Resistance, Junction to Ambient	(Note 2b)		160		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Units
$V_{\text {InPut }}$	Input Voltage of Bridge	INPUT1 to INPUT2 or INPUT2 to INPUT1		57	V
V_{G}	Gate Voltage of MOSFETs	G1, G4 to OUTN G2, G3 to OUTP		57	V
İnput	Input Current of Bridge	Bridge Current through Q2 and Q4 or (Q3 and Q1)		1.7	A
Ambient Operation Temperature (T_{A})			-40	85	${ }^{\circ} \mathrm{C}$
Junction Operating Temperature (T_{J}) (Note 5)			-40	125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$V_{\text {InPUT }}$	Input Voltage of Bridge	At INPUT1 to INPUT2 or INPUT2 to INPUT1			57	V
V_{G}	Gate Voltage of MOSFETs	At G1, G4 to OUTN and G2, G3 to OUTP			57	V
I_{Q}	Quiescent Current	Detection Mode $1.5 \mathrm{~V}<\mathrm{V}_{\text {INPUT }}=\mathrm{V}_{\mathrm{G}}<10.1 \mathrm{~V} \quad$ (Note 4)			5	$\mu \mathrm{A}$
		Classification Mode $10.2 \mathrm{~V}<\mathrm{V}_{\text {INPUT }}=\mathrm{V}_{\mathrm{G}}<23.9 \mathrm{~V} \quad$ (Note 4)			400	$\mu \mathrm{A}$
		Power On Mode Maximum $\mathrm{V}_{\text {INPUT }}=\mathrm{V}_{\mathrm{G}}=57 \mathrm{~V}$ (Note 4)			3.2	mA
VTURN_ON	Turn-On Voltage of MOSFETs	Turn-On of MOSFETs while V_{G} Increases (Note 4)	32		36	V
I Leakage	Turn-Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {OUTP }}=57 \mathrm{~V}, \mathrm{~V}_{\text {OUTN }}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ (Note 4)			700	$\mu \mathrm{A}$
V_{BF}	Backfeed Voltage	$\mathrm{V}_{\text {OUTP }}=57 \mathrm{~V}, \mathrm{~V}_{\text {OUTN }}=0 \mathrm{~V}, 100 \mathrm{kOhm}$ between INPUT1 and INPUT2 $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 4)			2.7	V
$\mathrm{r}_{\text {DS(on) }}$	N-ch MOSFET	$\mathrm{V}_{\mathrm{G}}=42 \mathrm{~V}, \mathrm{I}_{\text {INPUT }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		35	51	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{G}}=48 \mathrm{~V}, \mathrm{I}_{\text {INPUT }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		29	44	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{G}}=57 \mathrm{~V}, \mathrm{l}_{\text {INPUT }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		26	37	$\mathrm{m} \Omega$
	P-ch MOSFET	$\mathrm{V}_{\mathrm{G}}=-42 \mathrm{~V}, \mathrm{I}_{\text {INPUT }}=-1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95	147	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{G}}=-48 \mathrm{~V}, \mathrm{I}_{\text {INPUT }}=-1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		83	125	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{G}}=-57 \mathrm{~V}, \mathrm{I}_{\text {INPUT }}=-1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		76	107	$\mathrm{m} \Omega$

Notes:
4. INPUT1 is connected to G3 and G4 and also INPUT2 is connected to G1 and G2 like below.

[^1]Typical Characteristics (Q1 or Q4 N-Channel) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Figure 4. Normalized On Resistance vs. Junction Temperature

Figure 5. Source to Drain Diode Forward Voltage vs. Source Current

Figure 6. Gate Leakage Current vs. Gate to Source Voltage

Typical Characteristics (Q2 or Q3 P-Channel) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Figure 7. Normalized On Resistance vs. Junction Temperature

Figure 8. Source to Drain Diode Forward Voltage vs. Source Current

Figure 9. Gate Leakage Current vs. Gate to Source Voltage

Typical Characteristics (Q1 + Q3 or Q2 + Q4 In Serial) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Figure 10. Forward Bias Safe Operating Area

Figure 11. Single Pulse Maximum Power Dissipation

Figure 12. Junction-to-Ambient Transient Thermal Response Curve

Figure 13. Leakage vs. Output Voltage Curve

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LTC4227CUFD-4\#PBF LTC4212IMS ADM1075-2ARUZ-RL7 LM5067MW-1/NOPB ADM1075-1ARUZ-RL7 MAX5969BETB+T MIC22700YML-TR LTC4224IDDB-2\#TRMPBF LT1640LIS8\#PBF LTC4217CDHC-12\#PBF LT1640ALCS8\#PBF LT4294HDD\#PBF

LTC4253CGN\#PBF LTC4211CMS8\#PBF LTC4230CGN\#PBF LTC4224IMS-1\#PBF LTC4216IMS\#PBF LTC4212IMS\#PBF LTC4260CGN\#PBF LTC4227CGN-2\#PBF LTC4244IGN\#PBF LTC4212CMS\#PBF LT4250HCN8\#PBF ADM1276-3ACPZ-RL LTC4226IUD-1\#PBF LT1640AHCN8 ADM1075-2ACPZ ADM1075-1ACPZ ADM1073ARUZ ADM1073ARUZ-REEL7 ADM10751ARUZ ADM1075-2ARUZ ADM1170-1AUJZ-RL7 ADM1171-2AUJZ-RL7 ADM1172-1AUJZ-RL7 ADM1172-2AUJZ-RL7 ADM1176-1ARMZ-R7 ADM1177-1ARMZ-R7 ADM1177-2ARMZ-R7 ADM1178-1ARMZ-R7 ADM1275-3ARQZ ADM1275-1ARQZ ADM1275-3ARQZ-R7 ADM1276-3ACPZ ADM4210-1AUJZ-RL7 ADM1275-2ARQZ ADM1070ARTZ-REEL7 LTC1645IS\#PBF LTC1645CS\#PBF LTC4251BIS6-1\#TRMPBF

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: 5. Backfeed Voltage can not be guaranteed for junction temperature in excess of $85^{\circ} \mathrm{C}$. See V_{BF} in Electrical Characteristics Table.
