

MOSFET - Power, Single N-Channel, PQFN8 120 V, 4.0 mΩ, 114 A

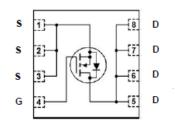
FDMS4D0N12C

Features

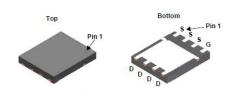
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These are Pb-free, Halogen Free / BFR Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch


MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Par	Symbol Value		Unit		
Drain-to-Source Vo	V_{DSS}	120	V		
Gate-to-Source Vo	Itage		V _{GS}	±20	V
Continuous Drain Current R _{0JC} (Note 7)	Steady State T _C = 25°C		Ι _D	114	Α
Power Dissipation R _{θJC} (Note 2)			P _D	106	W
Continuous Drain Current R _{0JA} (Note 6, 7)	Steady State	T _A = 25°C	Ι _D	18.5	A
Power Dissipation R _{0JA} (Note 6, 7)			P _D	2.7	W
Pulsed Drain Current	T _A = 25°C	C, t _p = 10 μs	I _{DM}	628	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to +150	ç
Source Current (Body Diode)			I _S	114	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 66.7 A, L = 0.1 mH)			E _{AS}	222	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			T _L	300	Ô


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR)DDS}	I _D MAX	R _{DS(on)} MAX		
120 V	67 A	4.0 mΩ @ 10 V		
	33 A	8.0 mΩ @ 6 V		

ELECTRICAL CONNECTION

N-Channel MOSFET

PQFN8 5x6 (Power 56) CASE 483AF

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FDMS4D0N12C = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

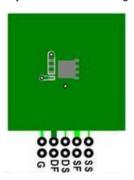
Device	Package	Shipping†
FDMS4D0N12C	PQFN8 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction – to – Case – Steady State (Note 7)	Rejc	1.18	°C/W
Junction – to – Ambient – Steady State (Note 7)	RθJA	45	

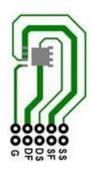
Symbol	Parameter	Test Co	nditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•				
Drain – to – Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		120			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			49		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25°C				1	μΑ
		V _{DS} = 96 V	V _{DS} = 96 V T _J = 125°C			100	μΑ
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ± 20 V			±100	nA
ON CHARACTERISTICS (Note 8)			•				
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 370 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 370 μA, ref to 25°C			-8.5		mV/°C
	_	V _{GS} = 10 V, I _D = 67 A			3.3	4.0	mΩ
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 6 V, I _D = 33 A			4.7	8.0	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 67 A			144		S
Gate-Resistance	R_{G}	T _A = 25°C			0.9	1.8	Ω
CHARGES & CAPACITANCES			•			•	•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$			4565	6460	pF
Output Capacitance	C _{OSS}	V _{DS} =	= 60 V		2045	3060	٦
Reverse Transfer Capacitance	C _{RSS}				17	24	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 \text{ V}, V_{DS} = 60 \text{ V},$ $I_D = 67 \text{ A}$			36	51	nC
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 60 \text{ V},$ $I_{D} = 67 \text{ A}$			58	82	
Gate-to-Source Charge	Q _{GS}				21		
Gate-to-Drain Charge	Q_{GD}				9		
Plateau Voltage	V _{GP}				5		V
Output Charge	Q _{OSS}	V _{DD} = 60 V, V _{GS} = 0 V			207		nC


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	Note 8)		•			-	
Turn – On Delay Time	td _(ON)	V_{GS} = 10 V, V_{DS} = 60 V, I_{D} = 67 A, R_{G} = 6 Ω			25	41	ns
Rise Time	t _r				8	16	
Turn – Off Delay Time	t _{D(OFF)}				45	72	
Fall Time	t _f	1			12	22	
DRAIN-SOURCE DIODE CHARA	CTERISTICS		•		•	•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.86	1.3	٧
		I _S = 67 A	T _J = 125°C		0.7	1.2	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 300 A/μs, I _S = 33 A			53	84	ns
Reverse Recovery Charge	Q _{RR}				175	280	nC
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V},$ $dI_{S}/dt = 1000 \text{ A}/\mu \text{s},$			36	57	ns
D D Ol					360	575	

 $I_{S} = 33 \text{ A}$ Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:


1. R_{6.JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{6.CA} is determined by the user's board design.

Reverse Recovery Charge

a) 45°C/W when mounted on a 1 in² pad of 2 oz copper.

 Q_{RR}

b) 115°C/W when mounted on a minimum pad of 2 oz copper.

360

575

nC

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 222 mJ is based on starting T_J = 25°C; L = 0.1 mH, I_{AS} = 66.7 A, V_{DD} = 100 V, V_{GS} = 12 V, 100% tested at L = 0.1 mH, I_{AS} = 66.7 A. 4. Pulsed I_D please refer to Fig. 11 SOA graph for more details.
- 5. Computed continuous current limited to max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.
- Surface-mounted on FR4 board using 1 in2 pad size, 2 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 8. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

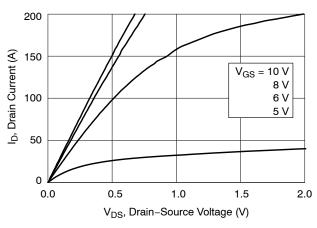


Figure 1. On-Region Characteristics

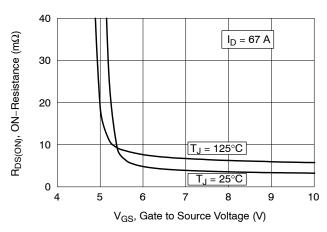


Figure 2. Transfer Characteristics

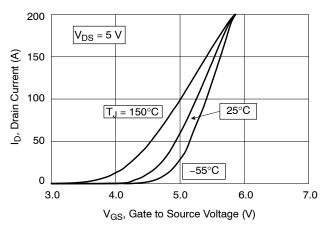


Figure 3. On-Resistance vs. Gate-to-Source Voltage

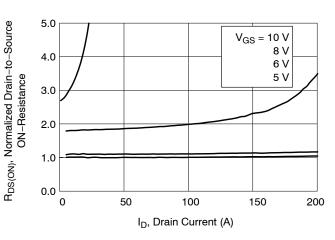


Figure 4. Normalized On-Resistance vs. Drain Current and Gate Voltage

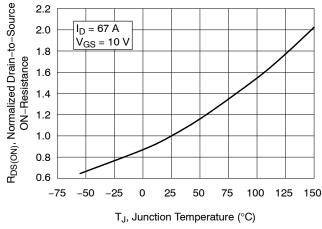


Figure 5. Normalized On–Resistance Variation with Temperature

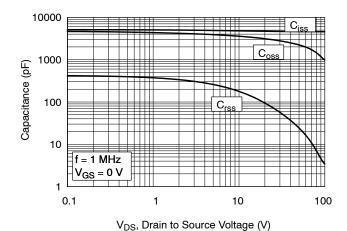


Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS (continued)

Figure 7. Gate-to-Source Voltage vs. Total Charge

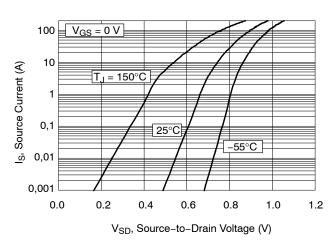


Figure 8. Diode Forward Voltage vs. Current

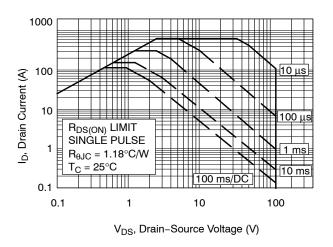


Figure 9. Safe Operating Area

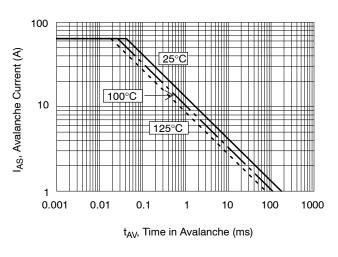


Figure 10. I_{PEAK} vs. Time in Avalanche

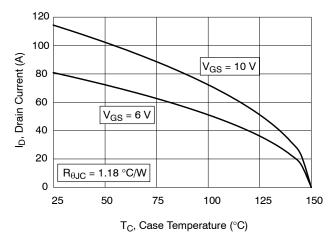


Figure 11. Maximum Drain Current vs. Case Temperature

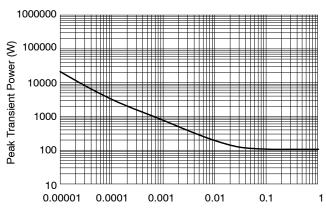


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

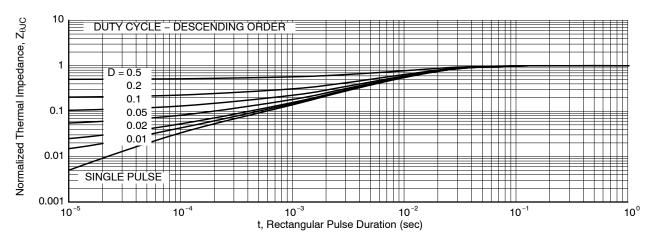
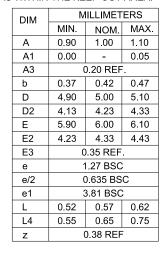
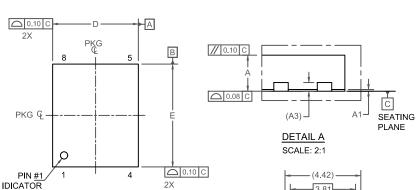
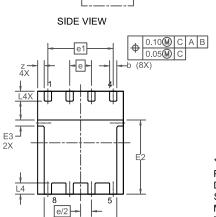


Figure 13. Transient Thermal Response Curve

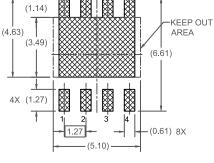



PQFN8 5X6, 1.27P CASE 483AF **ISSUE A**

DATE 06 JUL 2021


NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. AA,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.



SEE DETAIL A

BOTTOM VIEW

TOP VIEW

3.81

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13656G	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B