

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

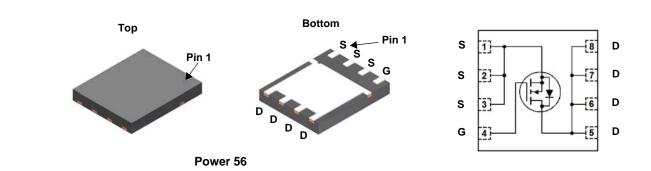
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel PowerTrench[®] MOSFET 30 V, 200 A, 0.65 m Ω

Features

- Max $r_{DS(on)}$ = 0.65 m Ω at V_{GS} = 10 V, I_D = 55 A
- Max $r_{DS(on)}$ = 0.9 m Ω at V_{GS} = 4.5 V, I_D = 47 A
- \blacksquare Advanced Package and Silicon combination for low $r_{\text{DS}(\text{on})}$ and high efficiency
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge and extremely low $r_{DS(on)}$.

Applications

- OringFET
- Synchronous Rectifier

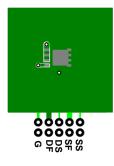
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

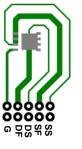
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
I _D	Drain Current -Continuous	T _C = 25 °C		200		
	-Continuous	T _A = 25 °C	(Note 1a)	55 400	A	
	-Pulsed		(Note 5)			
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	1536	mJ	
P _D	Power Dissipation	T _C = 25 °C		156	W	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.7	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature F	Range		-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.83	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	45	C/W

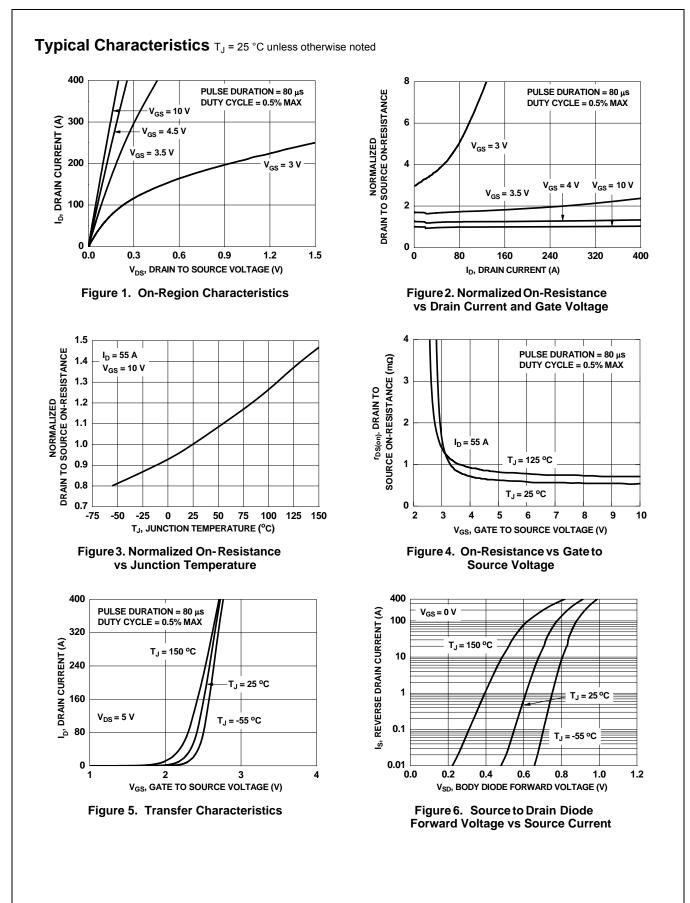
Package Marking and Ordering Information

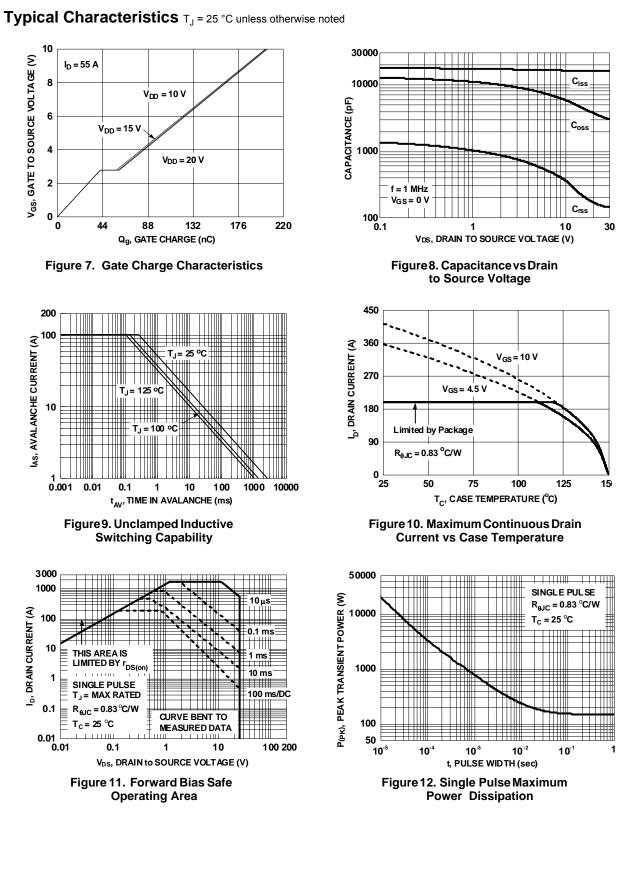

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8050	FDMS8050	Power 56	13 "	12 mm	3000 units


March 2015

$\begin{array}{c c} \Delta BV_{DSS} \\ \hline \Delta T_J \\ \hline D_{SS} \\ \hline d_{T_J} \\ \hline C \hline \hline C \hline \hline C \\ \hline C \hline \hline \hline C \hline \hline \hline \hline \hline C \hline \hline$	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance	$\begin{split} & I_D = 750 \ \mu\text{A}, \ V_{GS} = 0 \ V \\ & I_D = 750 \ \mu\text{A}, \ \text{referenced to } 25 \ ^\circ\text{C} \\ & V_{DS} = 24 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ & V_{GS} = 10 \ \text{V}, \ I_D = 750 \ \mu\text{A} \\ & I_D = 750 \ \mu\text{A}, \ \text{referenced to } 25 \ ^\circ\text{C} \\ & V_{GS} = 10 \ \text{V}, \ I_D = 55 \ \text{A} \\ & V_{GS} = 10 \ \text{V}, \ I_D = 55 \ \text{A}, \ T_J = 125 \ ^\circ\text{C} \\ & V_{DS} = 5 \ \text{V}, \ I_D = 55 \ \text{A} \\ \end{split}$	30	20 20 1.8 -6 0.5 0.7 0.7 333	1 100 3.0 0.65 0.9 0.9	V mV/°C μA nA V mV/°C mV/°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance	$\begin{split} & V_{DS} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C} \\ & V_{DS} = 24 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 750 \ \mu\text{A} \\ & I_{D} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{S} = 125 \ ^{\circ}\text{C} \\ \end{split}$		1.8 -6 0.5 0.7 0.7	100 3.0 0.65 0.9	mV/°C μA nA V mV/°C
$\begin{array}{c c} \Delta B V_{DSS} & F \\ \hline \Delta T_J & C \\ \hline \Delta T_J & C \\ \hline \Delta T_J & C \\ \hline I_{DSS} & 2 \\ \hline I_{DSS} & 2 \\ \hline I_{DSS} & C \\ \hline \begin{array}{c} \Delta V_{GS}(th) & C \\ \hline \Delta V_{GS}(th) & C \\ \hline \Delta T_J & T \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} r_{DS}(on) & S \\ \hline \end{array} \\ \hline \begin{array}{c} S \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} P_{S} & F \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Dynamic C \\ \hline \\ C_{iss} & I \\ \hline \\ C_{oss} & C \\ \hline \end{array} \\ \hline \end{array} $	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics	$\begin{split} & V_{DS} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C} \\ & V_{DS} = 24 \ \text{V}, \ \text{V}_{GS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V} \\ & V_{GS} = 20 \ \text{V}, \ \text{V}_{DS} = 0 \ \text{V} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 750 \ \mu\text{A} \\ & I_{D} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A} \\ & V_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{GS} = 10 \ \text{V}, \ \text{I}_{D} = 55 \ \text{A}, \ \text{V}_{S} = 125 \ ^{\circ}\text{C} \\ \end{split}$		1.8 -6 0.5 0.7 0.7	100 3.0 0.65 0.9	mV/°C μA nA V mV/°C
$\begin{array}{c c} \hline GSS & G \\ \hline GSS & G \\ \hline On Charact \\ \hline V_{GS(th)} & G \\ \hline \Delta V_{GS(th)} & G \\ \hline \Delta T_J & G \\ \hline \Gamma_{DS(on)} & G \\ \hline g_{FS} & F \\ \hline Dynamic Cl \\ \hline C_{iss} & G \\ \hline C_{rss} & F \\ \hline \end{array}$	Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 750 \mu\text{A}$ $I_D = 750 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 55 A$ $V_{GS} = 4.5 V, I_D = 47 A$ $V_{GS} = 10 V, I_D = 55 A, T_J = 125 ^\circ\text{C}$	1.0	-6 0.5 0.7 0.7	100 3.0 0.65 0.9	NA V mV/°C
$\begin{array}{c c} I_{GSS} & I \\ \hline \\ Dn Charact \\ \hline \\ V_{GS(th)} & I \\ \hline \\ \hline \\ \Delta V_{GS(th)} \\ \hline \\ \hline \\ \Delta T_J & I \\ \hline \\ \\ r_{DS(on)} & I \\ \hline \\ \hline \\ g_{FS} & F \\ \hline \\ \hline \\ \hline \\ Dynamic Cl \\ \hline \\ \hline \\ C_{iss} & I \\ \hline \\ \hline \\ C_{oss} & G \\ \hline \\$	teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 750 \mu\text{A}$ $I_D = 750 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 55 A$ $V_{GS} = 4.5 V, I_D = 47 A$ $V_{GS} = 10 V, I_D = 55 A, T_J = 125 ^\circ\text{C}$	1.0	-6 0.5 0.7 0.7	3.0 0.65 0.9	V mV/°C
$\begin{array}{c c} V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & T \\ \hline \Delta T_J & T \\ \hline r_{DS(on)} & S \\ \hline g_{FS} & F \\ \hline Dynamic Cl \\ \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \end{array}$	Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance	$I_{D} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}$ $V_{GS} = 4.5 \ \text{V}, I_{D} = 47 \ \text{A}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$	1.0	-6 0.5 0.7 0.7	0.65	mV/°C
$\begin{array}{c c} V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & T \\ \hline \Delta T_J & T \\ \hline r_{DS(on)} & S \\ \hline g_{FS} & F \\ \hline Dynamic Cl \\ \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \end{array}$	Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance	$I_{D} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}$ $V_{GS} = 4.5 \ \text{V}, I_{D} = 47 \ \text{A}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$	1.0	-6 0.5 0.7 0.7	0.65	mV/°C
$\begin{array}{c c} \frac{\Delta V_{GS(th)}}{\Delta T_J} & f \\ \hline \\ r_{DS(on)} & g \\ \hline \\ g_{FS} & f \\ \hline \\$	Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics	$I_{D} = 750 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}$ $V_{GS} = 4.5 \ \text{V}, I_{D} = 47 \ \text{A}$ $V_{GS} = 10 \ \text{V}, I_{D} = 55 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$		0.5 0.7 0.7	0.9	
g _{FS} F Dynamic Cl C _{iss} I C _{oss} C C _{rss} F	Forward Transconductance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 47 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 55 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		0.7 0.7	0.9	mΩ
g _{FS} F Dynamic Cl C _{iss} I C _{oss} C C _{rss} F	Forward Transconductance	V_{GS} = 10 V, I_D = 55 A, T_J = 125 °C		0.7		mΩ
9 _{FS} F Dynamic Cl C _{iss} I C _{oss} (C _{rss} F	haracteristics			-	0.9	1
Dynamic Cl C_{iss} I C_{oss} C C_{rss} F	haracteristics	V _{DS} = 5 V, I _D = 55 A		333		1
Dynamic Cl C _{iss} I C _{oss} C C _{rss} F					1	S
155	Input Capacitance Output Capacitance Reverse Transfer Capacitance	− V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		16150 4455 220	22610 6240 310	pF pF
	Reverse Transfer Capacitance			220	310	pF
R _g (Gate Resistance			1.0	3.0	Ω
Switching (Characteristics					
t _{d(on)}	Turn-On Delay Time			29	47	ns
t _r F	Rise Time	V _{DD} = 15 V, I _D = 55 A,		22	36	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		87	139	ns
	Fall Time			16	28	ns
Q _g 1	Total Gate Charge	V _{GS} = 0 V to 10 V		204	285	nC
Q _g 1	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		93	130	nC
	Gate to Source Charge	I _D = 55 A		41		nC
	Gate to Drain "Miller" Charge			18		nC
Drain-Sour	ce Diode Characteristics					
	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.2 A$ (Note 2)		0.64	1.2 1.2	V
		$V_{GS} = 0 V, I_S = 55 A$ (Note 2)		0.74		-
	Reverse Recovery Time Reverse Recovery Charge	— I _F = 55 A, di/dt = 100 A/μs		77 141	124 226	ns nC

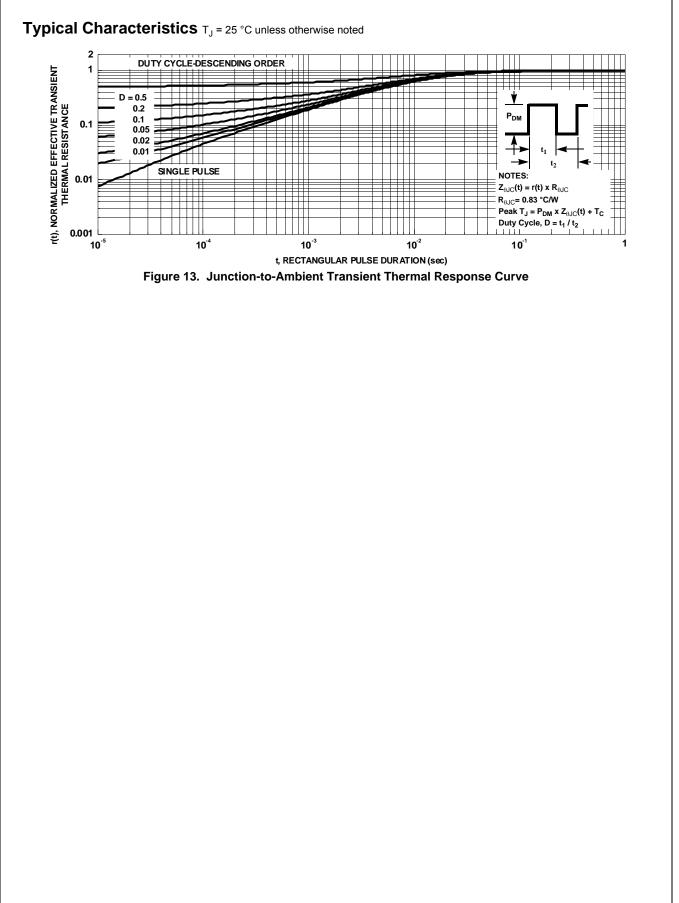
R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

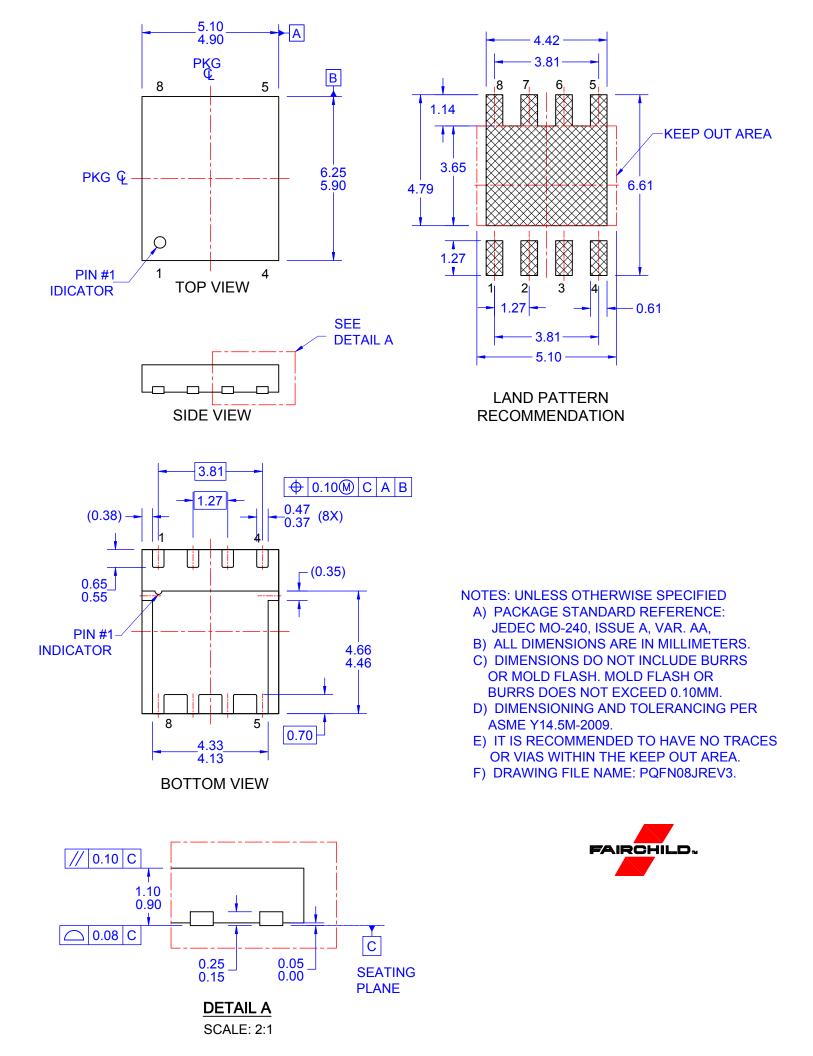

a. 45 °C/W when mounted on a 1 in² pad of 2 oz copper.



b. 115 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 1536 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 32 A, V_{DD} = 30 V, V_{GS} = 10 V, 100% test at L = 0.3 mH, I_{AS} = 69 A. 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied. 5. Pulse Id limited by junction temperature, td ≤ 100 μ s. Please refer to SOA curve for more details.


FDMS8050 N-Channel PowerTrench[®] MOSFET



FDMS8050 Rev. 1.2

FDMS8050 N-Channel PowerTrench[®] MOSFET

FDMS8050 N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7