

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

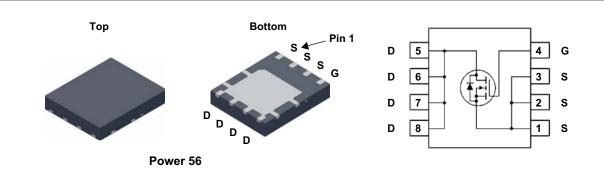
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

N-Channel PowerTrench[®] MOSFET 30V, 35A, 7.0m Ω

Features

- Max $r_{DS(on)}$ = 7.0m Ω at V_{GS} = 10V, I_D = 14A
- Max r_{DS(on)} = 11.0mΩ at V_{GS} = 4.5V, I_D = 11.5A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- RoHS Compliant



General Description

The FDMS8680 has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance.

Applications

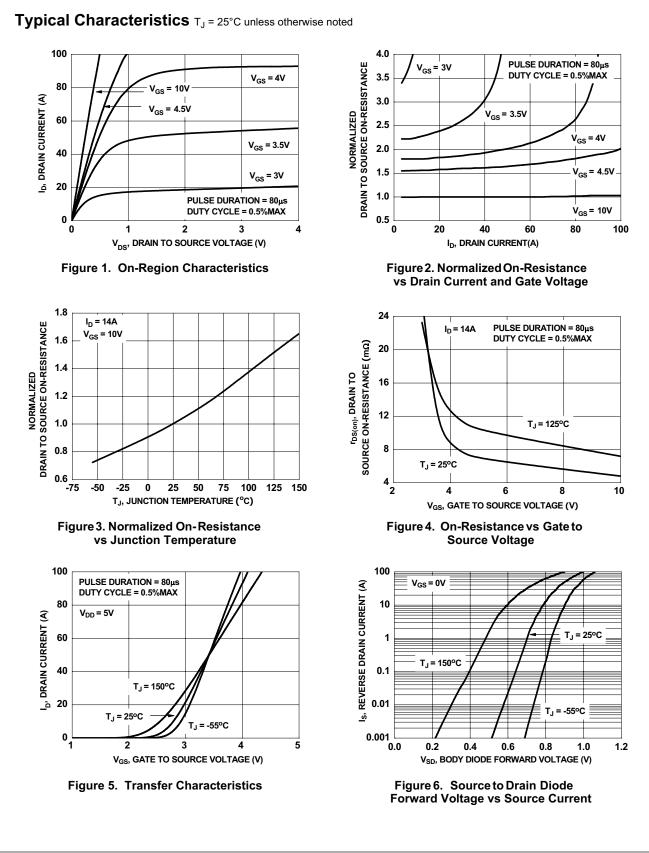
- Low Side for Synchronous Buck to Power Core Processor
- Secondary Side Synchronous Rectifier
- Low Side Switch in POL DC/DC Converter
- Oring FET/ Load Switch

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25°C		35	
	-Continuous (Silicon limited)	T _C = 25°C		63	
D	-Continuous	T _A = 25°C	(Note 1a)	14	— A
	-Pulsed			100	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	216	mJ
P	Power Dissipation	T _C = 25°C		50	14/
PD	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	W
TJ, TSTG	Operating and Storage Junction Temperature R	ange		-55 to +150	°C

Thermal Characteristics

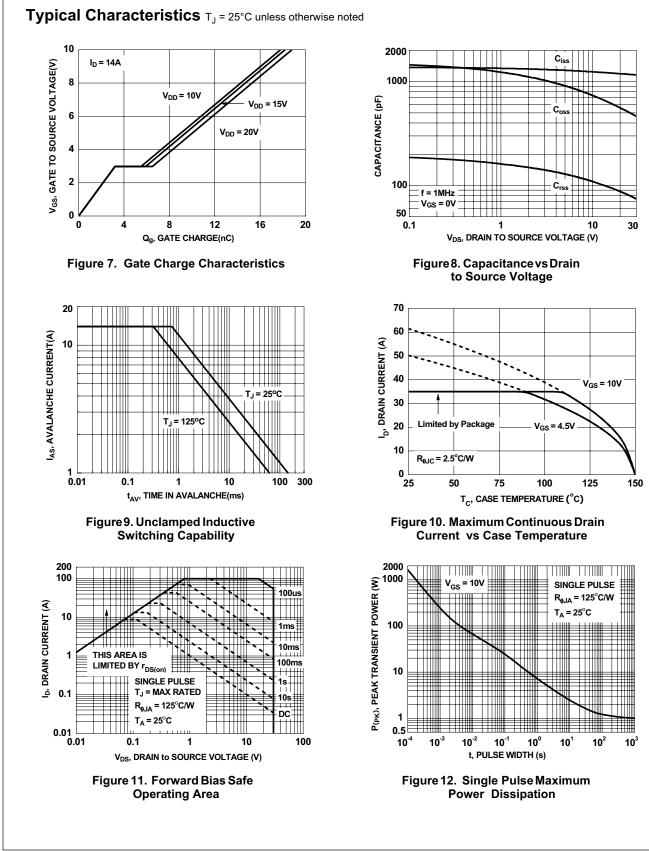
$R_{\theta JC}$	Thermal Resistance, Junction to Case	2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a) 50	C/VV


Package Marking and Ordering Information

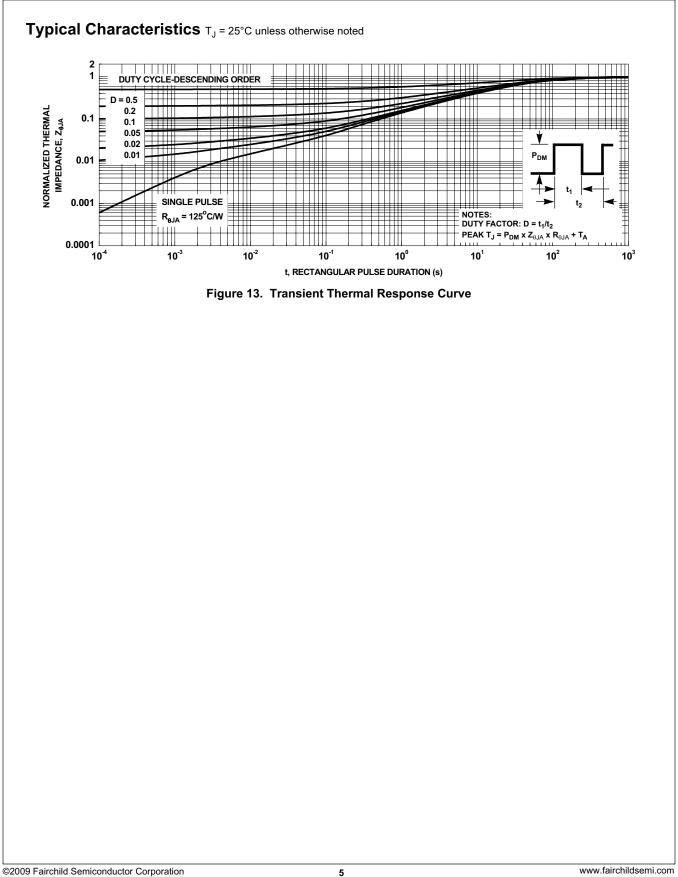
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8680	FDMS8680	Power 56	13"	12mm	3000units

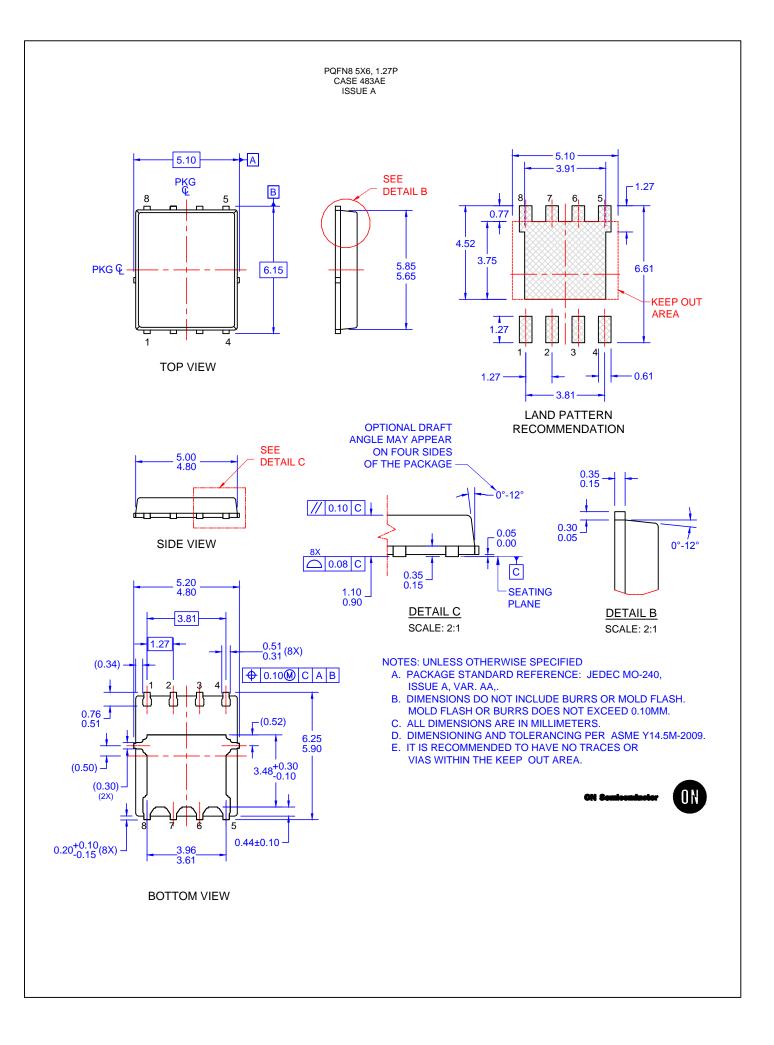
October 2014

	0 nA 0 V mV/° 0 mΩ 5 S 0 pF 0 pF 5 pF 0 Ω
$\begin{array}{ c c c c c c } BV_{DSS} & Drain to Source Breakdown Voltage & I_D = 250 \mu A, V_{GS} = 0V & 30 & & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & 24 & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & 24 & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & 24 & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & 24 & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & 24 & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & 1 & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & & \\ \hline D = 250 \mu A, referenced to 25^\circ C & & & \\ \hline D = 250 \mu$	mV/° μA 00 nA 00 V mV/° 0 mV/° 0 mΩ 5 S 00 pF 0 pF 0 pF 0 pF 0 pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mV/° μA 00 nA 00 V mV/° 0 mV/° 0 mΩ 5 S 00 pF 0 pF 0 pF 0 pF 0 pF
$ \begin{array}{ c c c c c } \hline \label{eq:constraint} \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	μΑ μΑ 0 nA 0 mV/° 0 mV/° 0 mΩ 5 0 pF 0 pF 5 pF 0 Ω
$ I_{DSS} Zero Gate Voltage Drain Current \\ V_{DS} = 24V, V_{GS} = 0V \\ I_{GSS} Gate to Source Leakage Current \\ V_{GS} = \pm 20V, V_{DS} = 0V \\ \hline \ t100 \\ \hline \ Don Characteristics \\ \hline \ V_{GS(th)} Gate to Source Threshold Voltage \\ \hline \ V_{GS} = V_{DS}, I_D = 250 \mu A \\ \hline \ AT_J Gate to Source Threshold Voltage \\ \hline \ Temperature Coefficient \\ \hline \ AT_J Gate to Source Threshold Voltage \\ \hline \ Temperature Coefficient \\ \hline \ AT_J Gate to Source Threshold Voltage \\ \hline \ Temperature Coefficient \\ \hline \ V_{GS} = 10V, I_D = 14A \\ \hline \ V_{GS} = 10V, I_D = 14A, T_J = 125^{\circ}C \\ \hline \ Reverse Transconductance \\ \hline \ V_{DS} = 10V, I_D = 14A, T_J = 125^{\circ}C \\ \hline \ Reverse Transfer Capacitance \\ \hline \ C_{rss} \\ \hline \ Reverse Transfer Capacitance \\ \hline \ R_g \\ \hline \ Gate Resistance \\ \hline \ Reverse Transfer Capacitance \\ \hline \ R_g \\ \hline \ Gate Resistance \\ \hline \ Switching Characteristics \\ \hline \ turn-On Delay Time \\ \hline \ Turn-On Delay Time \\ \hline \ V_{CS} \\ \hline \ $	0 nA 0 V mV/° 0 mΩ 5 S 0 pF 0 pF 5 pF 0 Ω
$\begin{array}{c c c c c c c } \hline I_{GSS} & Gate to Source Leakage Current & V_{GS} = \pm 20V, V_{DS} = 0V & \pm 100 \\ \hline \\$	0 V mV/° 0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
On Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250\mu$ A1.01.83.0 $\Delta V_{GS(th)}$ Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250\mu$ A, referenced to 25° C-5.7-5.7 $r_{DS(on)}$ Static Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 14A$ 5.57.0 $V_{GS} = 10V$, $I_D = 14A$, $T_J = 125^{\circ}$ C8.210.5 g_{FS} Forward Transconductance $V_{DD} = 10V$, $I_D = 14A$ 72Dynamic Characteristics C_{iss} Input Capacitance C_{oss} $V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1MHz$ 11951590 C_{rss} Reverse Transfer Capacitance $f = 1MHz$ 0.84.0Switching CharacteristicsSwitching Characteristics $t_{t(on)}$ Turn-On Delay Time918	mV/° 0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
$\begin{array}{ c c c c } \hline V_{GS}(th) & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, \ I_D = 250 \mu A & 1.0 & 1.8 & 3.0 \\ \hline \Delta V_{GS}(th) \\ \hline \Delta T_J & Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \mu A, referenced to 25°C & -5.7 & V_{GS} = 10V, \ I_D = 14A & 5.5 & 7.0 \\ \hline V_{GS} = 10V, \ I_D = 14A & 5.5 & 7.0 \\ \hline V_{GS} = 10V, \ I_D = 14A, \ T_J = 125°C & 8.2 & 10.5 \\ \hline g_{FS} & Forward Transconductance & V_{DS} = 10V, \ I_D = 14A & 72 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	mV/° 0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
$ \frac{\Delta V_{GS(th)}}{\Delta T_J} \begin{array}{c c} Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \mu A, referenced to 25°C &5.7 & V_GS = 10V, I_D = 14A & 5.5 & 7.0 \\ \hline V_{GS} = 10V, I_D = 14A &5.5 & 11.0 \\ \hline V_{GS} = 4.5V, I_D = 11.5A & 8.5 & 11.0 \\ \hline V_{GS} = 10V, I_D = 14A, T_J = 125°C & 8.2 & 10.5 \\ \hline g_{FS} & Forward Transconductance & V_{DD} = 10V, I_D = 14A & 72 \\ \hline \end{array} $ $ \begin{array}{c} \hline Dynamic Characteristics & V_{DS} = 15V, V_{GS} = 0V, \\ \hline c_{rss} & Reverse Transfer Capacitance & V_{DS} = 15V, V_{GS} = 0V, \\ \hline f = 1MHz &555 & 740 \\ \hline c_{rss} & Reverse Transfer Capacitance & f = 1MHz &555 & 11.5 \\ \hline R_g & Gate Resistance & f = 1MHz &555 & 11.5 \\ \hline \end{array} $	mV/° 0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
r_{DS(on)}Static Drain to Source On Resistance $V_{GS} = 4.5V, I_D = 11.5A$ 8.511.0 g_{FS} Forward Transconductance $V_{DD} = 10V, I_D = 14A, T_J = 125^{\circ}C$ 8.210.5Dynamic Characteristics $\frac{C_{iss}}{C_{oss}}$ Input Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 10Hz$ 11951590 C_{rss} Reverse Transfer Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 10Hz$ 95145 R_g Gate Resistancef = 1MHz0.84.0Switching Characteristicstri(on)Turn-On Delay Time918	0 mΩ 5 S 00 pF 0 pF 5 pF 0 Ω
$V_{GS} = 10V, I_D = 14A, T_J = 125^{\circ}C$ 8.210.5 g_{FS} Forward Transconductance $V_{DD} = 10V, I_D = 14A$ 72Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ 11951590 C_{rss} Reverse Transfer Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ 95145 R_g Gate Resistancef = 1MHz0.84.0Switching Characteristics $t_{r(op)}$ Turn-On Delay Time918	5 S 00 pF 0 pF 5 pF 0 Ω
g_{FS} Forward Transconductance $V_{DD} = 10V, I_D = 14A$ 72Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ 11951590 C_{oss} Output Capacitance $V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ 95145 R_g Gate Resistancef = 1MHz0.84.0Switching Characteristics1000 Jume9918	S 90 pF 0 pF 5 pF 0 Ω
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15V, V_{GS} = 0V,$ 11951590 C_{oss} Output Capacitance $f = 1MHz$ 555740 C_{rss} Reverse Transfer Capacitance $f = 1MHz$ 95145 R_g Gate Resistance $f = 1MHz$ 0.84.0Switching Characteristics $t_{f(on)}$ Turn-On Delay Time918	00 pF 0 pF 5 pF 0 Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 pF 5 pF 0 Ω
	0 pF 5 pF 0 Ω
Coss Output Capacitance VDS = 15V, VGS = 0V, f = 1MHz 555 740 Crss Reverse Transfer Capacitance f = 1MHz 95 145 Rg Gate Resistance f = 1MHz 0.8 4.0 Switching Characteristics Turn-On Delay Time 9 18	0 pF 5 pF 0 Ω
Crss Reverse Transfer Capacitance 1 95 145 Rg Gate Resistance f = 1MHz 0.8 4.0 Switching Characteristics 1 95 145 95 145 tr(on) Turn-On Delay Time 9 18 9 18	Ω (
Rg Gate Resistance f = 1MHz 0.8 4.0 Switching Characteristics Image: Characteristic structure 9 18	Ω (
Switching Characteristics	s ns
t _{d(on)} Turn-On Delay Time 9 18	ns
td(on) Tull-Of Delay fille 9 10	, 115
t- Rise Time $V_{DD} = 15V, I_D = 14A,$ 3 10	
$V_{GS} = 10V, R_{GEN} = 6\Omega$	
Q_{a} Total Gate Charge $V_{cs} = 0V$ to $5V$ $V_{DD} = 15V$, 10 14	
Q_{rr} Gate to Source Charge $I_D = 14A$ $I_D = 14A$	nC
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nC
9- 1 - 1 1 1 1	
$l_{\Gamma} = 14A$, $di/dt = 100A/us$	
Q _{rr} Reverse Recovery Charge 15 27	ns
Q_g Total Gate Charge $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 15V$,1826 Q_g Total Gate Charge $V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 15V$,1014 Q_{gs} Gate to Source Charge Q_g $Q_$	


©2009 Fairchild Ser FDMS8680 Rev.C3 ductor Corporation www.fairchildsemi.com

©2009 Fairchild Semiconductor Corporation FDMS8680 Rev.C3


www.fairchildsemi.com


©2009 Fairchild Semiconductor Corporation FDMS8680 Rev.C3

4

FDMS8680 N-Channel PowerTrench[®] MOSFET

FDMS8680 Rev.C3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B