ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FDP5500-F085

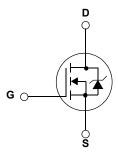
N-Channel UltraFET Power MOSFET

55V, 80A, $7m\Omega$

Features

- Typ $r_{DS(on)}$ = 5.1m Ω at V_{GS} = 10V, I_D = 80A
- Typ $Q_{g(10)}$ = 114nC at V_{GS} = 10V
- Simulation Models
 - -Temperature Compensated PSPICE and SABER $^{\mathsf{TM}}$ Models
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Qualified to AEC Q101
- RoHS Compliant

Applications


- DC Linear Mode Control
- Solenoid and Motor Control
- Switching Regulators
- Automotive Systems

Package

Symbol

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain to Source Voltage	(Note 1)	55	V
V_{DGR}	Drain to Gate Voltage ($R_{GS} = 20k\Omega$)	(Note 1)	55	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (T _C < 135°C, V _{GS} = 10V)		80	А
' D	Pulsed		See Figure 4	^
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	860	mJ
D	Power Dissipation		375	W
P_D	Derate above 25°C		2.5	W/oC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	
T _L	Max. Lead Temp. for Soldering (at 1.6mm from case for 10sec)		300	οС
T _{pkg}	Max. Package Temp. for Soldering (Package Body for 10sec)		260	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.4	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-220AB, 1in ² copper pad area	62	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP5500	FDP5500-F085	TO-220AB	Tube	N/A	50 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chai	ractoristics					

B_{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		55	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 50V, V_{GS} = 0V$		-	-	1	^
		V _{DS} = 45V	_C = 150°C	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.8	4	V
r _{DS(on)}	Drain to Source On Resistance	$I_D = 80A, V_{GS} = 10V$	-	5.1	7	mΩ

Dynamic Characteristics

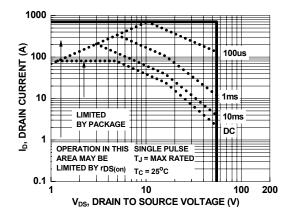
C _{iss}	Input Capacitance)/ OF)/)/	.,		3565	-	pF
C _{oss}	Output Capacitance		$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz	-	1310	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		-	395	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 20V	$V_{GS} = 0$ to 20V		-	207	269	nC
Q _{g(10)}	Total Gate Charge at 10V	V _{GS} = 0 to 10V	$V_{DD} = 30V$	-	114	148	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0$ to 2V	$I_D = 80A$ $R_1 = 0.4\Omega$	-	6.6	8.6	nC
Q_{gs}	Gate to Source Gate Charge		$I_0 = 1.0 \text{mA}$	-	17.2	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		9	-	52	-	nC

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units

Switching Characteristics

t _{on}	Turn-On Time		-	-	75	ns
t _{d(on)}	Turn-On Delay Time	.,	-	12	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 80A,$ $R_{L} = 0.4\Omega, V_{GS} = 10V,$	-	34	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_{\text{L}} = 0.452, V_{\text{GS}} = 10V,$ $R_{\text{GS}} = 2.5\Omega$	-	37	-	ns
t _f	Fall Time	1.65 2.012	-	23	-	ns
t _{off}	Turn-Off Time		-	-	96	ns


Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	I _{SD} = 80A	-	0.9	1.25	V
t _{rr}	Reverse Recovery Time	- 80A dl	-	58	75	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 80A$, $dI_{SD}/dt = 100A/\mu s$	-	71	92	nC

Starting T_J = 25°C to175°C.
 Starting T_J = 25°C, L = 0.42mH, I_{AS} = 64A

Typical Characteristics 160 $V_{GS} = 10V$ ID, DRAIN CURRENT (A) 120 80 **CURRENT LIMITED** 40 BY PACKAGE 0.0 0 25 50 75 100 125 150 175 0 25 75 100 125 150 T_C, CASE TEMPERATURE(°C) T_C, CASE TEMPERATURE(°C) Figure 1. Normalized Power Dissipation vs Case Figure 2. Maximum Continuous Drain Current vs **Temperature Case Temperature** 2 **DUTY CYCLE - DESCENDING ORDER** NORMALIZED THERMAL IMPEDANCE, Z_{eJC} D = 0.50P_{DM} 0.20 0.10 0.05 0.02 0.01 NOTES: DUTY FACTOR: D = t₁/t₂ PEAK $T_J = P_{DM} \times Z_{\theta JA} \times R_{\theta JA} + T_C$ SINGLE PULSE 0.01 10⁻³ 10⁻⁵ 10⁻² 10⁻¹ 10 t, RECTANGULAR PULSE DURATION(s) Figure 3. Normalized Maximum Transient Thermal Impedance 10000 $T_C = 25^{\circ}C$ TRANSCONDUCTANCE V_{GS} = 10V MAY LIMIT CURRENT FOR TEMPERATURES IN THIS REGION ABOVE 25°C DERATE PEAK IDM, PEAK CURRENT (A) **CURRENT AS FOLLOWS:** 1000 175 - T_C 100 SINGLE PULSE 10 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10 t, RECTANGULAR PULSE DURATION(s) Figure 4. Peak Current Capability

Typical Characteristics

1000

(Y)

If R = 0

tay = (L)(I_{AS})/(1.3*RATED BV_{DSS} - V_{DD})

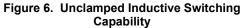
If R ± 0

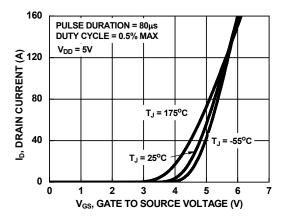
tay = (L)(I_{AS})/(1.3*RATED BV_{DSS} - V_{DD}) +1]

The starting T_J = 150°C

STARTING T_J = 150°C

10.01


0.1


1 10 100 1000 5000

tay, TIME IN AVALANCHE (ms)

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

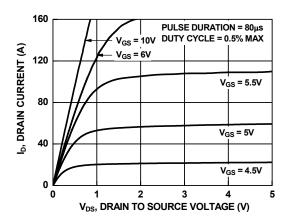
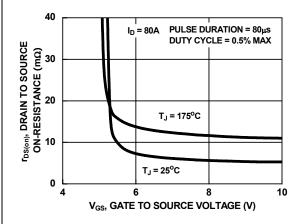



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

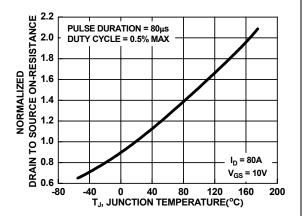


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

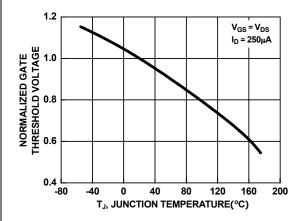


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

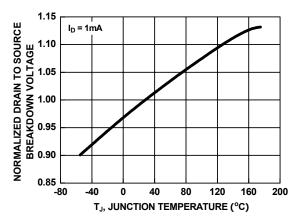


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

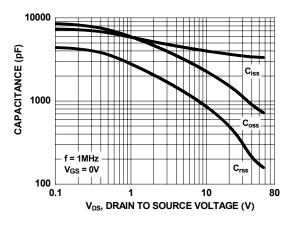


Figure 13. Capacitance vs Drain to Source Voltage

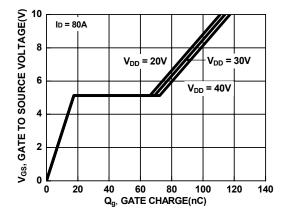


Figure 14. Gate Charge vs Gate to Source Voltage

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B