

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FDPC8014S PowerTrench[®] Power Clip 25V Asymmetric Dual N-Channel MOSFET

Features

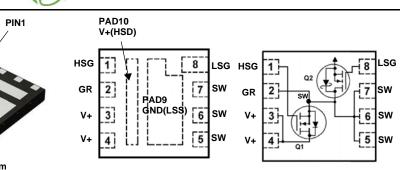
Q1: N-Channel

- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 10 V, I_D = 20 A
- Max $r_{DS(on)}$ = 4.7 m Ω at V_{GS} = 4.5 V, I_D = 18 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 1.2 m Ω at V_{GS} = 10 V, I_D = 41 A
- Max $r_{DS(on)}$ = 1.4 m Ω at V_{GS} = 4.5 V, I_D = 37 A
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing

PIN1


RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

Top Power Clip 5X6 Bottom

Pin	Name	Description	Pin	Name	Description	Pin	Name	Description
1	HSG	High Side Gate	3,4,10	V+(HSD)	High Side Drain	8	LSG	Low Side Gate
2	GR	Gate Return	5,6,7	SW	Switching Node, Low Side Drain	9	GND(LSS)	Low Side Source

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

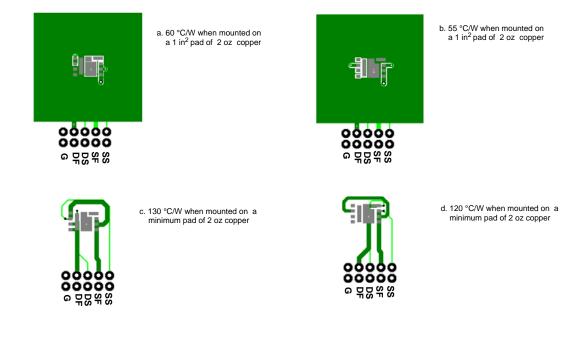
Symbol	Parameter	Q1	Q2	Units		
V _{DS}	Drain to Source Voltage			25	V	
V _{GS}	Gate to Source Voltage		±12	±12	V	
	Drain Current -Continuous $T_C = 25 \text{ °C}$		60	110		
I _D	-Continuous	T _A = 25 °C	20 ^{Note1a}	41 ^{Note1b}	А	
	-Pulsed	T _A = 25 °C (Note 4)	75	160	1	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	73	253	mJ	
P _D	Power Dissipation for Single Operation T ₀		21	42	W	
	Power Dissipation for Single Operation	T _A = 25 °C	2.1 ^{Note1a}	2.3 Note1b	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to	+150	°C		

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	6.0	3.0	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	60 ^{Note1a}	55 ^{Note1b}	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	130 ^{Note1c}	120 ^{Note1d}	

April 2014

FDPC8014S PowerTrench[®] Power Clip


Device MarkingDevice05OD/16ODFDPC8014S		Package Power Clip 56	Reel Size		Tape Width 12 mm		Quantity 3000 units		
	al Chara	cteristics T _J = 25 °C			_				1
Symbol		Parameter	Test Con	ditions	Туре	Min	Тур	Max	Units
Dff Chara	Drain to Source Breakdown Voltage		I _D = 250 μA, V _{GS} = I _D = 1 mA, V _{GS} = 0		Q1 Q2	25 25			V
ΔΒV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient		$I_D = 10$ mA, $v_{GS} = 0.0$ $I_D = 250 \mu$ A, referenced to 25 °C $I_D = 10$ mA, referenced to 25 °C		Q1 Q2	20	24 24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current		$V_{DS} = 20 V, V_{GS} = 0 V$ $V_{DS} = 20 V, V_{GS} = 0 V$		Q1 Q2			1 500	μA μA
I _{GSS}	Gate to So Forward	urce Leakage Current,	$V_{GS} = 12 \text{ V} / 8 \text{ V}, \text{ V}$ $V_{GS} = 12 \text{ V} / -8 \text{ V}, \text{ V}$	_{DS} = 0 V	Q1 Q2			±100 ±100	nA nA
On Chara	cteristics								
V _{GS(th)}	Gate to Source Threshold Voltage				Q1 Q2	0.8 1.1	1.3 1.4	2.5 2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{I}}$	Gate to Source Threshold Voltage Temperature Coefficient		$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ \text{mA}$, referenced to 25 °C				-4 -3		mV/°C
			$V_{GS} = 10V, I_D = 20$ $V_{GS} = 4.5 V, I_D = 1$ $V_{GS} = 10 V, I_D = 20$	A 8 A	Q1		2.8 3.4 3.9	3.8 4.7 5.3	
r _{DS(on)}	Drain to So	ource On Resistance	$V_{GS} = 10V, I_D = 41 A$ $V_{GS} = 4.5 V, I_D = 37 A$ $V_{GS} = 10 V, I_D = 41 A, T_J = 125 °C$		Q2		0.9 1.0 1.1	1.2 1.4 1.5	mΩ
9 _{FS}	Forward Tr	ansconductance	$V_{DS} = 5 V, I_D = 20$ $V_{DS} = 5 V, I_D = 47$) A	Q1 Q2		182 315	1.0	S
Dynamic	Character	istics							
C _{iss}	Input Capacitance Output Capacitance		Q1: $V_{DS} = 13 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$ -Q2: $V_{DS} = 13 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$		Q1 Q2		1695 6580	2375 9870	pF
C _{oss}					Q1 Q2		495 1720	710 2580	pF
C _{rss}	Reverse Transfer Capacitance				Q1 Q2		54 204	100 370	pF
R _g	Gate Resistance				Q1 Q2	0.1 0.1	0.4 0.4	1.2 1.2	Ω
Switching	Characte	eristics							
t _{d(on)}	Turn-On De	elay Time	Q1:		Q1 Q2		8 16	16 28	ns
t _r	Rise Time		$Q_{DD} = 13 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ R}_{GEN} = 6 \Omega$ $Q_{2}:$ $V_{DD} = 13 \text{ V}, \text{ I}_{D} = 41 \text{ A}, \text{ R}_{GEN} = 6 \Omega$		Q1 Q2		2 6	10 11	ns
t _{d(off)}	Turn-Off De	elay Time			Q1 Q2		24 47	38 75	ns
t _f	Fall Time				Q1 Q2		2 4	10 10	ns
Q _g	Total Gate	Charge	$V_{GS} = 0 V$ to 10 V	Q1	Q1 Q2		25 93	35 130	nC
Qg	Total Gate	Charge	$V_{GS} = 0 V \text{ to } 4.5 V$	$V_{DD} = 13 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	Q1 Q2		11 43	16 60	nC
Q _{gs}	Gate to So	urce Gate Charge		Q2 V _{DD} = 13 V, I _D	Q1 Q2		3.4 13		nC
Q _{gd}	Gate to Drain "Miller" Charge		= 41 A		Q1 Q2		2.2 8.5		nC

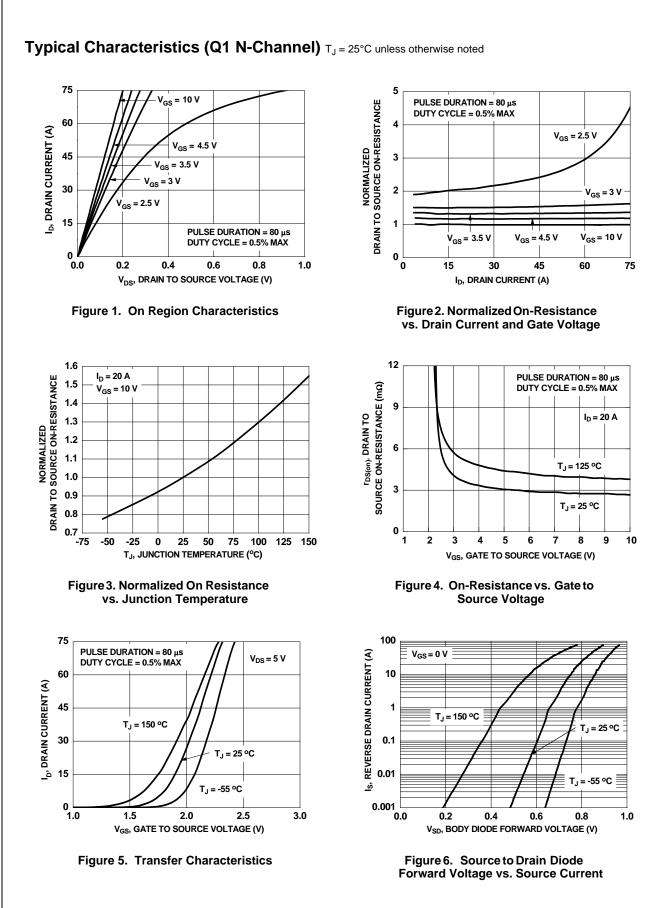
σ
C
∞
Ó
7
ā
~
D
9
Ş
ē
÷.
2
¥
ธ
Ť
_ 29
ŏ
š
ē
Ť
Ο
Ĭ
σ

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 20 A$ (Note 2) $V_{GS} = 0 V, I_S = 41 A$ (Note 2)	Q1 Q2		0.8 0.8	1.2 1.2	V
I _S	Diode continuous forward current		Q1 Q2		60 110		A
I _{S,Pulse}	Diode pulse current	-T _C = 25 °C	Q1 Q2		75 160		А
t _{rr}	Reverse Recovery Time $Q1$ $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		Q1 Q2		25 36	40 58	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 41 A, di/dt = 300 A/µs	Q1 Q2		10 47	20 75	nC

Notes

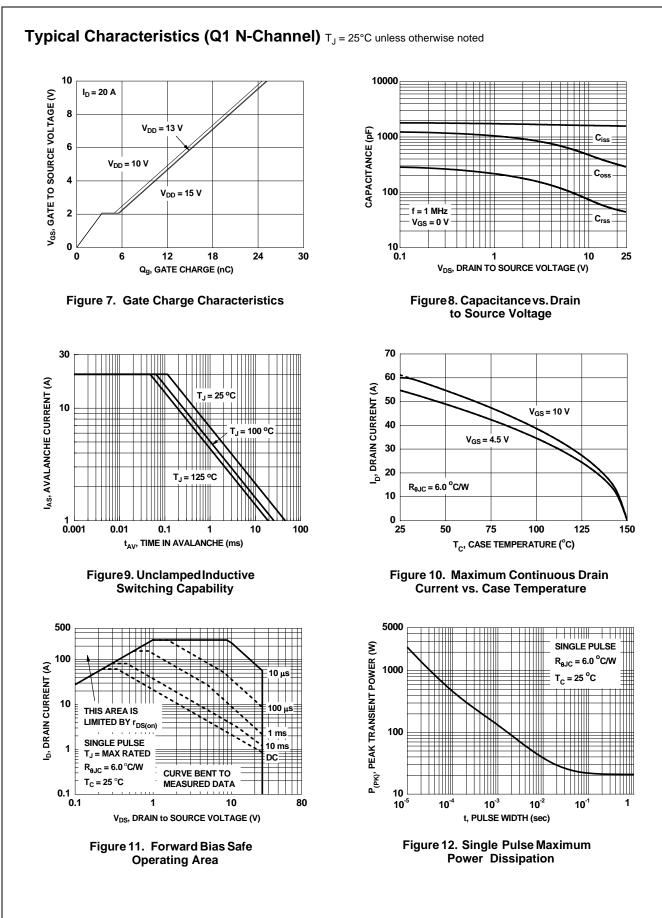
 $1.R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

2 Pulse Test: Pulse Width < 300 $\mu \text{s},$ Duty cycle < 2.0%.

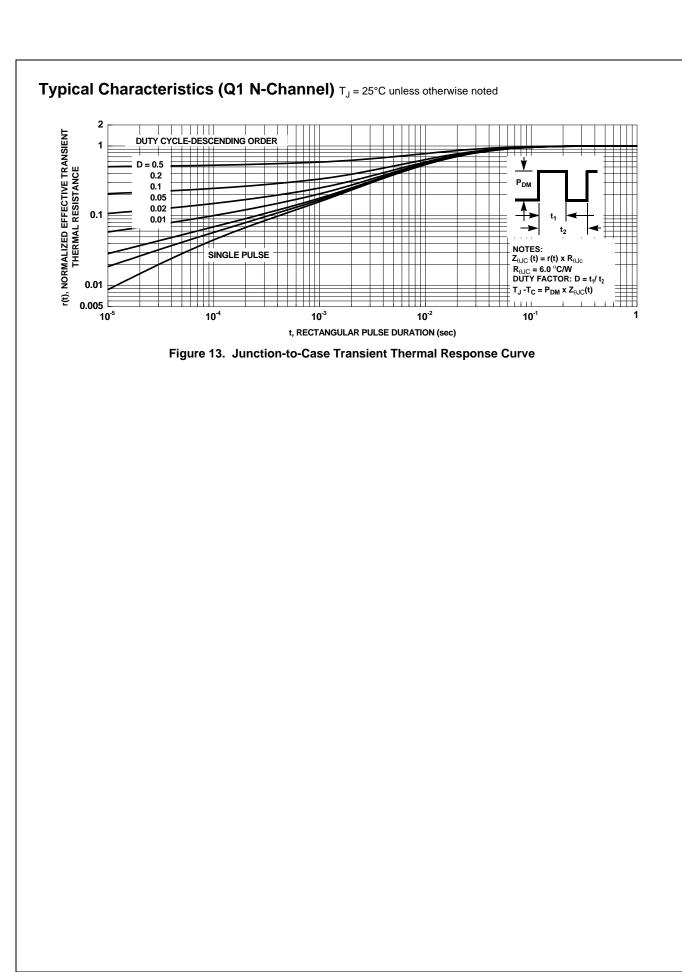

3. Q1 : E_{AS} of 73 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 24 A.

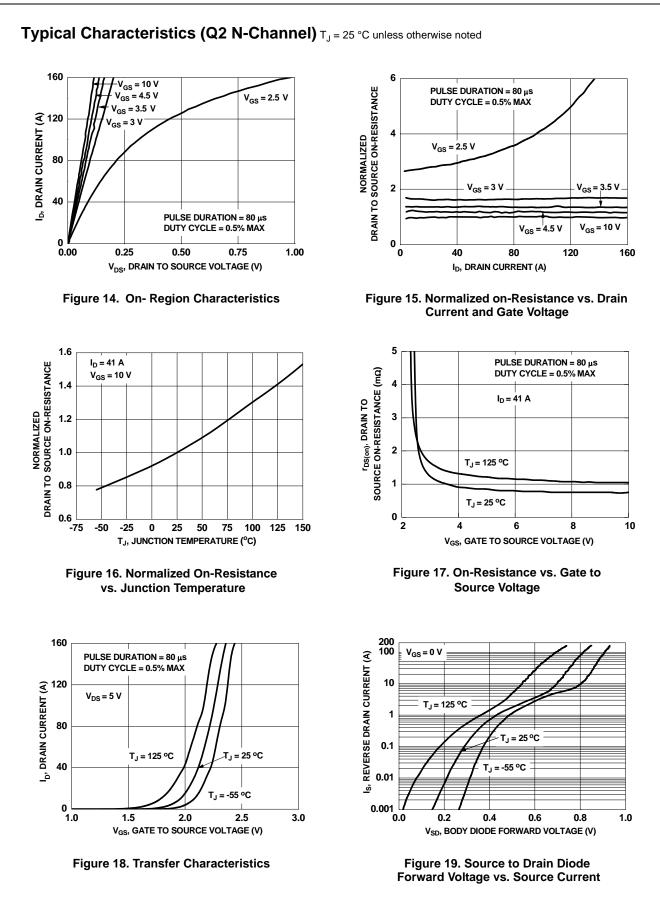
Q2: E_{AS} of 253 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 13 A, V_{DD} = 25 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 43 A.

4. Pulsed Id limited by junction temperature,td<=10 us. Please refer to SOA curve for more details.

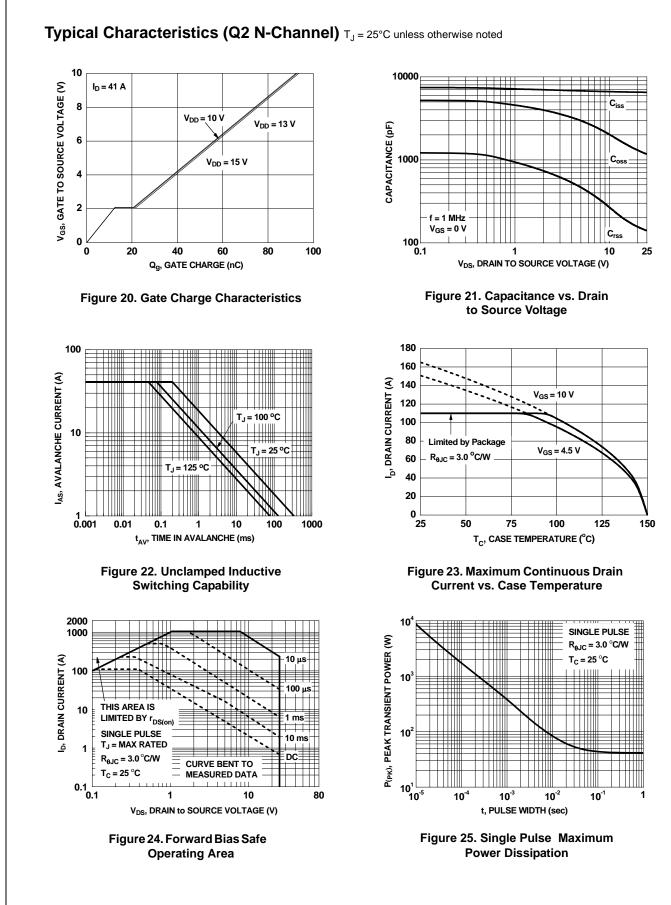

5. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be applied.

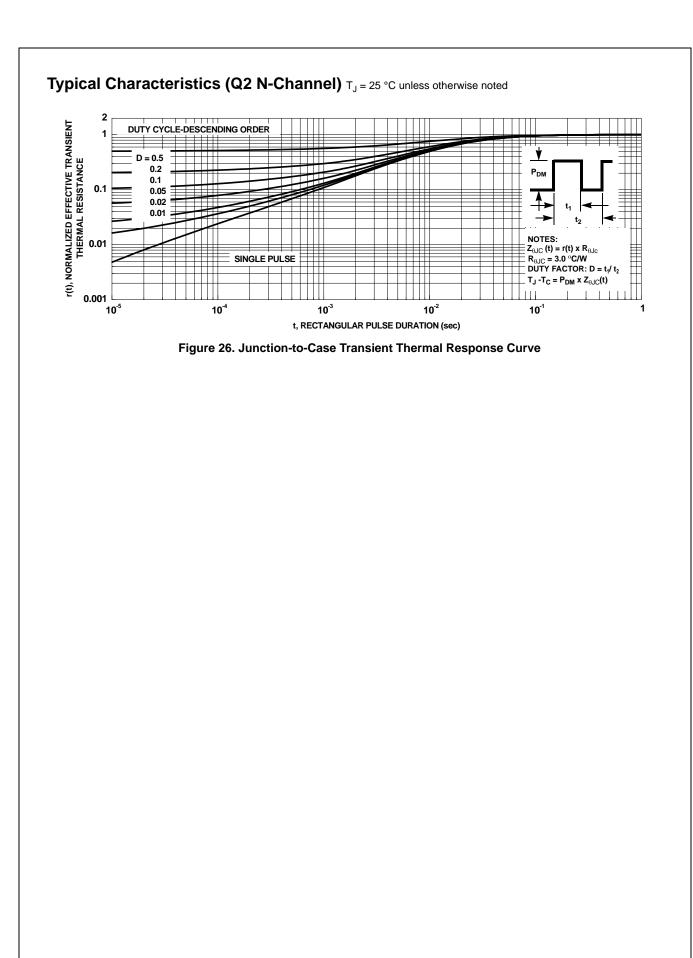
FDPC8014S PowerTrench[®] Power Clip




©2013 Fairchild Semiconductor Corporation

FDPC8014S PowerTrench[®] Power Clip





FDPC8014S PowerTrench[®] Power Clip

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverses recovery characteristic of the FDPC8014S.

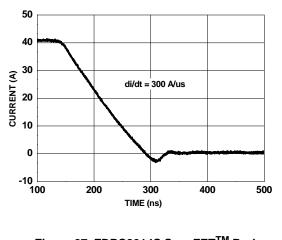


Figure 27. FDPC8014S SyncFETTM Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

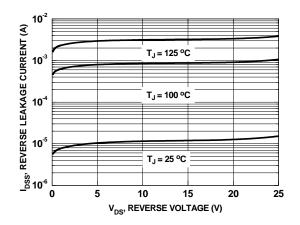
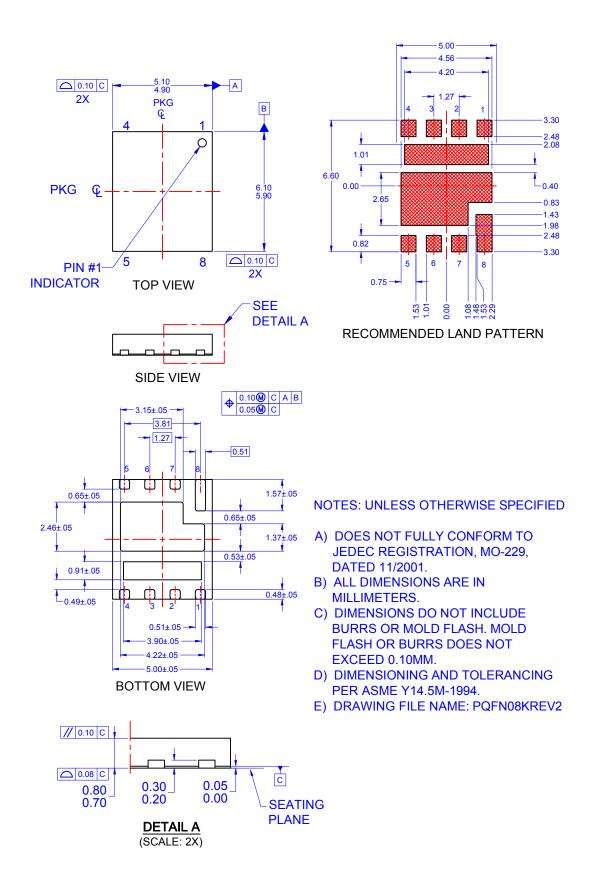



Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain-source Voltage

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7