

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]FAIRCHILD
-
FDP51N25 / FDPF51N25
N-Channel UniFET ${ }^{\text {TM }}$ MOSFET
250 V, 51 A, 60 m Ω

Features

- $\mathrm{R}_{\mathrm{DS}(\text { on })}=48 \mathrm{~m} \Omega$ (Typ.) $@ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25.5 \mathrm{~A}$
- Low Gate Charge (Typ. 55 nC)
- Low C ${ }_{\text {rss }}$ (Typ. 63 pF)

Applications

- PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

Description

UniFET ${ }^{\text {TM }}$ MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Symbol	Parameter		FDP51N25	$\begin{gathered} \text { FDPF51N25 } \\ \text { FDPF51N25YDTU } \\ \text { FDPF51N25RDTU } \end{gathered}$	Unit
$\mathrm{V}_{\mathrm{DSS}}$	Drain-Source Voltage		250		V
I_{D}	Drain Current	- Continuous ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) - Continuous ($T_{C}=100^{\circ} \mathrm{C}$)	$\begin{aligned} & 51 \\ & 30 \end{aligned}$	$\begin{aligned} & 51^{*} \\ & 30^{*} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
IDM	Drain Current	- Pulsed (Note 1)	204	204*	A
$\mathrm{V}_{\text {GSS }}$	Gate-Source voltage		± 30		V
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy (Note 2)		1111		mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current (Note 1)		51		A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy		32		mJ
VISO	Insulation withstand voltage (RMS) from all three leads to external heat $\operatorname{sink}\left(\mathrm{t}=0.3 \mathrm{sec} ; \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		N/A	2500	V
dv/dt	Peak Diode Recovery dv/dt		4.5		V/ns
P_{D}	Power Dissipation	$\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$ - Derate Above $25^{\circ} \mathrm{C}$	$\begin{array}{r} 320 \\ 3.7 \end{array}$	$\begin{aligned} & 38 \\ & 0.3 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range		-55 to +150		${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300		${ }^{\circ} \mathrm{C}$

*Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	FDP51N25	FDPF51N25 FDPF51N25YDTU FDPF51N25RDTU	Unit
$\mathrm{R}_{\theta \mathrm{JJC}}$	Thermal Resistance, Junction-to-Case, Max.	0.39	3.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{AJ}}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDP51N25	FDP51N25	TO-220	Tube	N/A	N/A	50 units
FDPF51N25	FDPF51N25	TO-220F	Tube	N/A	N/A	50 units
FDPF51N25YDTU	FDPF51N25	TO-220F (Y-formed)	Tube	N/A	N/A	50 units
FDPF51N25RDTU	FDPF51N25	TO-220F (LG-formed)	Tube	N/A	N/A	50 units

Electrical Characteristics $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Off Characteristics						
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	250	--	--	V
$\begin{gathered} \Delta B V_{\mathrm{DSS}} \\ \mathrm{I} \Delta \mathrm{~T}_{\mathrm{J}} \end{gathered}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	--	0.25	--	V/ ${ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=200 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	--	--	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IGSSF	Gate-Body Leakage Current, Forward	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	--	--	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	--	--	-100	nA
On Characteristics						
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3.0	--	5.0	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25.5 \mathrm{~A}$	--	0.048	0.060	Ω
grs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25.5 \mathrm{~A}$	--	43	--	S
Dynamic Characteristics						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	--	2620	3410	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		--	530	690	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		--	63	90	pF
Switching Characteristics						
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=125 \mathrm{~V}, I_{D}=51 \mathrm{~A}, \\ & V_{G S}=10 \mathrm{~V}, R_{G}=25 \Omega \end{aligned}$ (Note 4)	--	62	135	ns
t_{r}	Turn-On Rise Time		--	465	940	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		--	98	205	ns
t_{f}	Turn-Off Fall Time		--	130	270	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=51 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (Note 4)	--	55	70	nC
Q_{gs}	Gate-Source Charge		--	16	--	nC
Q_{gd}	Gate-Drain Charge		--	27	--	nC
Drain-Source Diode Characteristics and Maximum Ratings						
I_{s}	Maximum Continuous Drain-Source Diode Forward Current		--	--	51	A
$\mathrm{I}_{\text {SM }}$	Maximum Pulsed Drain-Source Diode Forward Current		--	--	204	A
$\mathrm{V}_{\text {SD }}$	Drain-Source Diode Forward Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=51 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=51 \mathrm{~A}, \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	--	--	1.4	V
$\mathrm{t}_{\text {rr }}$	Reverse Recovery Time		--	178	--	ns
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge		--	4.0	--	$\mu \mathrm{C}$

Notes:

1. Repetitive rating: pulse-width limited by maximum junction temperature
2. $\mathrm{L}=0.68 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=51 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$ starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
3. $I_{S D} \leq 51 \mathrm{~A}$, di/dt $\leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV} V_{\mathrm{DSS}}$, starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9-1. Maximum Safe Operating Area for FDP51N25

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9-2. Maximum Safe Operating Area for FDPF51N25 / FDPF51N25YDTU

Typical Performance Characteristics (Conituea)

Figure 11-1. Transient Thermal Response Curve for FDP51N25

Figure 11-2. Transient Thermal Response Curve for FDPF51N25 / FDPF51N25YDTU

Figure 12. Gate Charge Test Circuit \& Waveform

Figure 13. Resistive Switching Test Circuit \& Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit \& Waveforms

Figure 15. Peak Diode Recovery dv/dt Test Circuit \& Waveforms

ON Semiconductor
ON

NOTES:
A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A.
B DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ASME

Y14.5-1994.
F. DRAWING FILE NAME: TO220N03REV2

NOTES:
A. EXCEPT WHERE NOTED CONFORMS TO

B DIAJ SC91A.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
F. DRAWING FILE NAME: TO220Q03REV2

NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO

EIAJ SC91A.
B DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
F. OPTION 1 - WITH SUPPORT PIN HOLE.

OPTION 2 - NO SUPPORT PIN HOLE
G. DRAWING FILE NAME: TO220M03REV5

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

