

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

150V, 0.047 Ohms, 4.9A, N-Channel UltraFET ${ }^{\circledR}$ Trench MOSFET

General Description

UltraFET ${ }^{\circledR}$ devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for Rds(on), low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

Applications

- DC/DC converters
- Telecom and Data-Com Distributed Power Architectures
- 48-volt I/P Half-Bridge/Full-Bridge
- 24-volt Forward and Push-Pull topologies

Features

- $R_{D S(O N)}=0.040 \Omega$ (Typ.), $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
- $\mathrm{Q}_{\mathrm{g}(\mathrm{TOT})}=29 \mathrm{nC}($ Typ. $), \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
- Low $Q_{R R}$ Body Diode
- Maximized efficiency at high frequencies
- UIS Rated

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage	150	V
V_{GS}	Gate to Source Voltage	± 20	V
${ }_{\text {I }}$	```Drain Current Continuous (\(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\theta \mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\)) Continuous (\(\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\theta J \mathrm{~A}}=50^{\circ} \mathrm{C} / \mathrm{W}\)) Pulsed```	4.9	A
		3.1	A
		Figure 4	A
P_{D}	Power dissipation Derate above $25^{\circ} \mathrm{C}$	$\begin{aligned} & 2.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{T}_{\mathrm{J}, \mathrm{T}} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta J \mathrm{C}}$	Thermal Resistance Junction to Case	(NOTE1)	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Case at 10 seconds	(NOTE2)	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance Junction to Case at steady state	(NOTE2)	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS2572	FDS2572	330 mm	12 mm	2500 units

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
B ${ }^{\text {VDSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	150	-	-	V
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	250	
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	-	4	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.040	0.047	Ω
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$	-	0.044	0.053	Ω

Dynamic Characteristics

$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2050	2870	pF
$\mathrm{C}_{\text {OSS }}$	Output Capacitance		-	220	310	pF
$\mathrm{C}_{\mathrm{RSS}}$	Reverse Transfer Capacitance		-	48	80	pF
R_{g}	Gate Resistance		0.1	1.3	3.0	Ω
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V	-	29	38	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to $2 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}$	-	4	6	nC
Q_{gs}	Gate to Source Gate Charge	$\begin{aligned} \mathrm{I}_{\mathrm{D}} & =4.9 \mathrm{~A} \\ \mathrm{I}_{\mathrm{g}} & =1.0 \mathrm{~mA} \end{aligned}$	-	8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	6	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau		-	4	-	nC

Switching Characteristics

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \Omega \end{aligned}$	-	-	27	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	14	-	ns
t_{r}	Rise Time		-	4	-	ns
$\mathrm{t}_{\text {d(OFF) }}$	Turn-Off Delay Time		-	44	-	ns
t_{f}	Fall Time		-	22	-	ns
toff	Turn-Off Time		-	-	100	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=4.9 \mathrm{~A}$	-	-	1.25	V
		$I_{\mathrm{SD}}=3.1 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=4.9 \mathrm{~A}, \mathrm{dl} \mathrm{SD}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	72	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=4.9, \mathrm{dl} \mathrm{CD}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	158	nC

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.
2. $R_{\theta J A}$ is measured with $1.0 \mathrm{in}^{2}$ copper on FR-4 board

Typical Characteristic

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristic (Continued)

Figure 5. Unclamped Inductive Switching Capability

Figure 7. Saturation Characteristics

Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 6. Transfer Characteristics

Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature

Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Typical Characteristic (Continued)

Figure 11. Capacitance vs Drain to Source Voltage

Test Circuits and Waveforms

Figure 13. Unclamped Energy Test Circuit

Figure 15. Gate Charge Test Circuit

Figure 12. Gate Charge Waveforms for Constant Gate Currents

Figure 14. Unclamped Energy Waveforms

Figure 16. Gate Charge Waveforms

Figure 17. Switching Time Test Circuit

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, $T_{J M}$, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $R_{\theta J A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that $T_{J M}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of $P_{D M}$ is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 19 defines the $R_{\theta J A}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with $10 z$ copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually
utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 19 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$
\begin{equation*}
R_{\theta J A}=64+\frac{26}{0.23+\text { Area }} \tag{EQ.2}
\end{equation*}
$$

The transient thermal impedance $\left(\mathrm{Z}_{\theta \mathrm{JA}}\right)$ is also effected by varied top copper board area. Figure 20 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100 ms . For pulse widths less than 100 ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

Figure 19. Thermal Resistance vs Mounting Pad Area

Figure 20. Thermal Impedance vs Mounting Pad Area

PSPICE Electrical Model

.SUBCKT FDS2572 213 ; rev August 2001
CA $1288 \mathrm{e}-10$
Cb $15148 \mathrm{e}-10$
Cin 68 2e-9
路

Dbody 75 DbodyMOD
Dbreak 511 DbreakMOD
Dplcap 105 DplcapMOD
Ebreak 1171718157.4
Eds 148581
Egs 138681
Esg 610681
Evthres 6211981
Evtemp 20618221
It 8171
Lgate 19 5.61e-9
Ldrain 25 1.0e-9
Lsource 37 1.98e-9
RLgate 1956.1
RLdrain 2510
RLsource 3719.8
Mstro 16688 MstroMOD
Mmed 16688 MmedMOD
Mweak 162188 MweakMOD
Rbreak 1718 RbreakMOD 1
Rdrain 5016 RdrainMOD 2.1e-2
Rgate 9201.47
RSLC1 551 RSLCMOD 1e-6
RSLC2 550 1e3
Rsource 87 RsourceMOD 1.5e-2
Rvthres 228 RvthresMOD 1
Rvtemp 1819 RvtempMOD 1
S1a 612138 S1AMOD
S1b 1312138 S1BMOD
S2a 6151413 S2AMOD
S2b 13151413 S2BMOD
Vbat 2219 DC 1
ESLC 5150 VALUE=\{(V(5,51)/ABS $\left.(\mathrm{V}(5,51)))^{*}\left(\operatorname{PWR}\left(\mathrm{~V}(5,51) /\left(1 \mathrm{e}-6^{*} 65\right), 3\right)\right)\right\}$
.MODEL DbodyMOD D (IS=4e-11 N=1.131 RS=4.4e-3 TRS1=2e-3 TRS2=1e-6

+ CJO=1.44e-9 M=0.67 TT=7.4e-8 XTI=4.2)
.MODEL DbreakMOD D (RS=0.38 TRS1=2e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO $=5 \mathrm{e}-10 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{M}=0.7$)
.MODEL MstroMOD NMOS (VTO=4.05 KP=85 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=3.35 KP=5 IS=1e-30 $\mathrm{N}=10$ TOX=1 L=1u W=1u RG=1.47)
.MODEL MweakMOD NMOS (VTO=2.76 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14.7 RS=0.1)
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-3e-7)
MODEL RdrainMOD RES (TC1=1e-2 TC2=3e-5)
.MODEL RSLCMOD RES (TC1=3e-3 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=4.5e-3 TC2=1e-6)
.MODEL RvtempMOD RES (TC1=-5e-3 TC2=2e-6)
.MODEL RvthresMOD RES (TC1=-3e-3 TC2=-1.4e-5)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-10 VOFF=-2)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-10)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.3)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.8)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

REV August 2001
template FDS2572 n2, n1,n3
electrical n2,n1,n3
\{
var i iscl
dp.. model dbodymod $=($ isl $=4 \mathrm{e}-11, \mathrm{nl}=1.131, \mathrm{rs}=4.4 \mathrm{e}-3$, trs $1=2 \mathrm{e}-3$, trs2 $=1 \mathrm{e}-6, \mathrm{cjo}=1.44 \mathrm{e}-9, \mathrm{~m}=0.67, \mathrm{tt}=7.4 \mathrm{e}-8, \mathrm{xti}=4.2)$
dp..model dbreakmod $=(r s=0.38$, trs1 $=2 e-3$, trs2 $=-8.9 e-6)$
dp..model dplcapmod $=(\mathrm{cjo}=5 \mathrm{e}-10$, is $=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.7)$
m..model mstrongmod $=($ type $=$ n $n, v t o=4.05, \mathrm{kp}=85$, is $=1 \mathrm{e}-30$, tox $=1)$
$\mathrm{m} .$. model $\mathrm{mmedmod}=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=3.35, \mathrm{kp}=5$, is $=1 \mathrm{e}-30$, tox $=1$)
m. .model mweakmod $=\left(\right.$ type $=_n, \mathrm{vto}=2.76, \mathrm{kp}=0.05$, is $=1 \mathrm{e}-30$, tox $=1, \mathrm{rs}=0.1$)
sw_vcsp. model s1amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-10$, voff $=-2)$
sw_vcsp..model s1bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=-2$, voff $=-10)$
sw_vcsp..model s2amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-0.8$, voff $=0.3)$
sw_vcsp..model s2bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=0.3$, voff $=-0.8)$
c.ca n12 n8 = 8e-10
c.cb n15 n14 $=8 \mathrm{e}-10$
c. $\operatorname{cin} \mathrm{n} 6 \mathrm{n} 8=2 \mathrm{e}-9$
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 157.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 $=1$ spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it $\mathrm{n} 8 \mathrm{n} 17=1$
I.Igate $\mathrm{n} 1 \mathrm{n} 9=5.61 \mathrm{e}-9$
I.Idrain n2 n5 = 1.0e-9
I. Isource n3 n7 = 1.98e-9
res.rlgate n1 n9 $=56.1$
res.rldrain n2 n5 $=10$
res.rlsource n3 n7 = 19.8
m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$

```
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-3e-7
res.rdrain n50 n16 = 2.1e-2, tc1=1e-2,tc2=3e-5
res.rgate n9 n20 = 1.47
res.rslc1 n5 n51 = 1e-6, tc1=3e-3,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.5e-2, tc1=4.5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-3e-3,tc2=-1.4e-5
res.rvtemp n18 n19 = 1, tc1=-5e-3,tc2=2e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/65))** 3))
}
```


SPICE Thermal Model

REV August 2001
FDS2572
Copper Area $=1 \mathrm{in}^{2}$
CTHERM1 TH 8 2.0e-3
CTHERM2 $875.0 \mathrm{e}-3$
CTHERM3 76 1.0e-2
CTHERM4 65 4.0e-2
CTHERM5 54 9.0e-2
CTHERM6 43 2.0e-1
CTHERM7 321
CTHERM8 2 TL 3
RTHERM1 TH 8 1.0e-1
RTHERM2 $875.0 \mathrm{e}-1$
RTHERM3 761
RTHERM4 655
RTHERM5 548
RTHERM6 4312
RTHERM7 3218
RTHERM8 2 TL 25

SABER Thermal Model

Copper Area $=1 \mathrm{in}^{2}$
template thermal_model th tl
thermal_c th, tl
\{
ctherm.ctherm1 th c2 $=2.0 \mathrm{e}-3$
ctherm.ctherm2 c2 c3 $=5.0 \mathrm{e}-3$ ctherm.ctherm3 c3 c4 $=1.0 \mathrm{e}-2$ ctherm.ctherm4 c4 c5 $=4.0 \mathrm{e}-2$ ctherm.ctherm5 c5 c6 $=9.0 \mathrm{e}-2$ ctherm.ctherm6 c6 c7 $=2.0 \mathrm{e}-1$
ctherm.ctherm7 c7 c8 =1
ctherm.ctherm8 c8 tl =3
rtherm.rtherm1 th $\mathrm{c} 2=1.0 \mathrm{e}-1$
rtherm.rtherm2 c2 c3 $=5.0 \mathrm{e}-1$
rtherm. rtherm3 c3 c4 = 1
rtherm.rtherm4 c4 c5 =5
rtherm.rtherm5 c5 c6 =8
rtherm.rtherm6 c6 c7 =12
rtherm. rtherm $7 \mathrm{c} 7 \mathrm{c} 8=18$
rtherm.rtherm8 c8 tl $=25$
\}

TABLE 1. THERMAL MODELS

COMPONANT	$\mathbf{0 . 0 4} \mathbf{i n}^{\mathbf{2}}$	$\mathbf{0 . 2 8} \mathbf{i n}^{\mathbf{2}}$	$\mathbf{0 . 5 2 \mathbf { i n } ^ { \mathbf { 2 } }}$	$\mathbf{0 . 7 6} \mathbf{i n}^{\mathbf{2}}$	$\mathbf{1 . 0} \mathbf{i n}^{\mathbf{2}}$
CTHERM6	$1.2 \mathrm{e}-1$	$1.5 \mathrm{e}-1$	$2.0 \mathrm{e}-1$	$2.0 \mathrm{e}-1$	$2.0 \mathrm{e}-1$
CTHERM7	0.5	1.0	1.0	1.0	1.0
CTHERM8	1.3	2.8	3.0	3.0	3.0
RTHERM6	26	20	15	13	12
RTHERM7	39	24	21.3	29.7	18
RTHERM8	55				25

MS-012AA
8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A $_{1}$	0.004	0.0098	0.10	0.25	-
b	0.013	0.020	0.33	0.51	-
c	0.0075	0.0098	0.19	0.25	-
D	0.189	0.1968	4.80	5.00	2
E	0.2284	0.244	5.80	6.20	-
E $_{1}$	0.1497	0.1574	3.80	4.00	3
e	0.050	BSC	1.27	BSC	-
H	0.0099	0.0196	0.25		0.50
L	0.016	0.050	0.40		1.27

NOTES:

1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90.
2. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches $(0.15 \mathrm{~mm})$ per side.
3. Dimension " E_{1} " does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches $(0.25 \mathrm{~mm})$ per side.
4. " L " is the length of terminal for soldering.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. Controlling dimension: Millimeter.
7. Revision 8 dated 5-99.

MS-012AA

12mm TAPE AND REEL

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{Cool}{ }^{\text {TM }}$	FPS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$
AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	${ }^{(8)}$	- SYSTEM ${ }^{()^{*}}$
AX-CAP ${ }^{\text {® }}$ *	FRFET ${ }^{\text {® }}$	PowerTrench ${ }^{\text {® }}$	
BitSiC ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	PowerXS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
Build it $\mathrm{Now}^{\text {TM }}$	Green Bridge ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
CorePLUS ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBuck ${ }^{\text {M }}$
CorePOWER ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$ (${ }^{\text {a }}$	TinyLogic ${ }^{\text {® }}$
CROSSVOLT ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTOTM
CTL ${ }^{\text {TM }}$	GTOTM	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	()$^{T M}$	TinyPWM ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	O)	TinyWire ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {™ }}$	Marking Small Speakers Sound Louder	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TranSiC ${ }^{\text {® }}$
EcoSPARK ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\circledR \text { ®* }}$
ESBC ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$ Solutions ${ }^{\text {a }}$	μ SerDes $^{\text {TM }}$
5^{8}	MicroFET ${ }^{\text {TM }}$ MicroPak ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	Wr
Fairchild ${ }^{(8)}$	MicroPak2 ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	SerDes ${ }^{\text {c }}$
Fairchild Semiconductor ${ }^{\circledR}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionMax ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {mim-3 }}$	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	mWSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	UniFETM
FAST ${ }^{\text {® }}$	OptoHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	VCX'M
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SupreMOS ${ }^{\text {® }}$	VisualMax ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\left({ }^{®}\right.}$	SyncFET ${ }^{\text {TM }}$	VoltagePlus ${ }^{\text {™ }}$ $\text { XS }{ }^{\text {™ }}$

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

