onsemi

<u>MOSFET</u> – P-Channel, Logic Level, POWERTRENCH[®]

-40 V, -80 A, 4.9 m Ω

FDWS9508L-F085

Features

- Typ $R_{DS(on)} = 3.6 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$; $I_D = -80 \text{ A}$
- Typ $Q_{g(tot)} = 82 \text{ nC}$ at $V_{GS} = -10 \text{ V}$; $I_D = -80 \text{ A}$
- UIS Capability
- Wettable Flanks for Automatic Optical Inspection (AOI)
- AEC-Q101 Qualified
- These Devices are Pb-Free and are RoHS Compliant

Applications

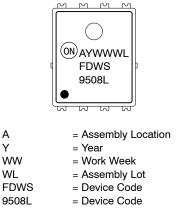
- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Electrical Power Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems


MOSFET MAXIMUM RATINGS ($I_J = 25^{\circ}C$, Unless otherwise specified)							
Symbol	Parameter	Ratings	Unit				
V _{DSS}	Drain to Source Voltage	-40	V				
V _{GS}	Gate to Source Voltage	±16	V				
I _D	Drain Current (T _C = 25°C) Continuous (V _{GS} = −10 V) (Note 1) Pulsed	-80 (see Fig. 4)	A				
E _{AS}	Single Pulse Avalanche Energy (Note 2)	211	mJ				
P _D	Power Dissipation Derate Above 25°C	214 1.43	W W/°C				
T _J , T _{STG}	Operating and Storage Temperature	–55 to +175	°C				
$R_{\theta JC}$	Thermal Resistance (Junction to case)	0.7	°C/W				
$R_{ hetaJA}$	Maximum Thermal Resistance (Junction to Ambient) (Note 3)	50	°C/W				

MOSFET MAXIMUM RATINGS (T, I = 25°C, Unless otherwise specified)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current is limited by wirebond configuration
- 2. Starting Tj = 25°C, L = 0.1 mH, I_{AS} = -65 A, V_{DD} = -40 V during inductor charging and V_{DD} = 0 V during time in avalanche
- 3. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2 oz copper.


V _{DSS}	R _{DS(ON)} MAX	I _D MAX
–40 V	4.9 mΩ @ −10 V	–80 A

P-Channel MOSFET

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
FDWS9508L-F085	DFNW8 (Power56) (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Semiconductor Components Industries, LLC, 2016 October, 2021 – Rev. 3

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
OFF CHAP	OFF CHARACTERISTICS						
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_{D} = -250 \ \mu A, \ V_{GS} = 0 \ V$	-40	-	-	V	
I _{DSS}	Drain-to-Source Leakage Current	V_{DS} = -40 V, V_{GS} = 0 V, T_J = 25°C	-	-	-1	μΑ	
	Current	V_{DS} = –40 V, V_{GS} = 0 V, T_J = 175°C (Note 4)	-	-	-1	mA	
I _{GSS}	Gate-to-Source Leakage Current	V_{GS} = ±16 V, V_{DS} = 0 V	-	-	±100	nA	

ON CHARACTERISTICS

V _{GS(th)}	Gate-to-Source Threshold Voltage	V_{GS} = V_{DS} , I_D = -250 μ A	-1.0	-1.8	-3.0	V
R _{DS(on)}	Drain to Source On–Resistance	I_D = –80 A, V_{GS} = –4.5 V, T_J = 25°C	-	5.6	8.5	mΩ
	On-Resistance	I_D = -80 A, V_{GS} = -10 V, T_J = 25°C	-	3.6	4.9	
		I_D = –80 A, V_{GS} = –10 V, T_J = 175°C (Note 4)	-	5.9	8.0	

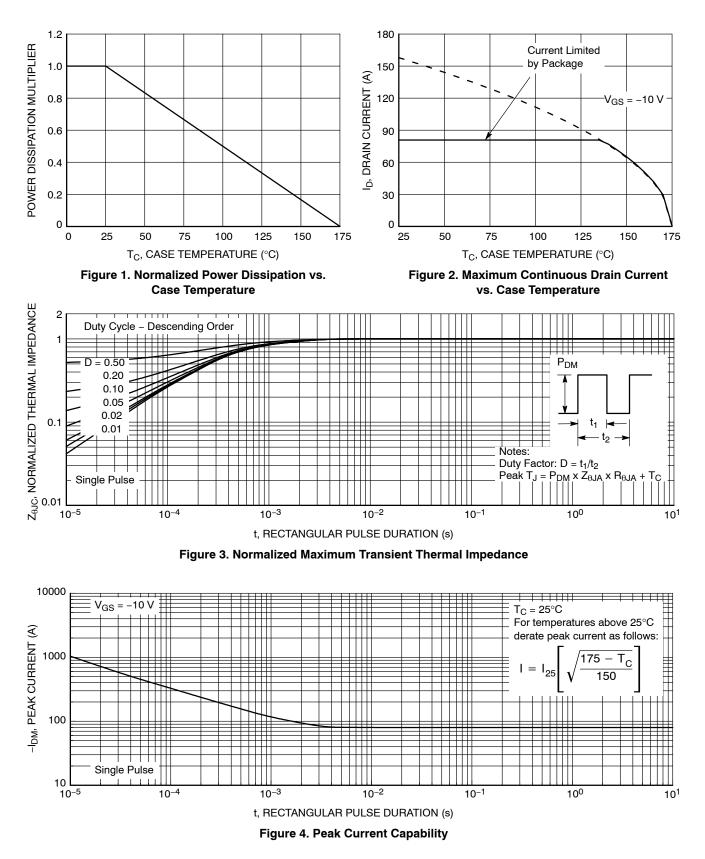
DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = -20 V, V_{GS} = 0 V, f = 1 MHz		-	4840	-	pF
C _{oss}	Output Capacitance			-	2310	-	
C _{rss}	Reverse Transfer Capacitance			_	49	_	
Rg	Gate Resistance	f = 1 MHz		-	24	-	Ω
Q _{g(ToT)}	Total Gate Charge at 10 V	V_{GS} = 0 V to -10 V	$V_{DD} = -32 V,$	-	82	107	nC
Q _{g(th)}	Threshold Gate Charge	$V_{GS} = 0 V \text{ to } -2 V$ $I_D = -80 \text{ A}$		-	11	-	
Q _{gs}	Gate-to-Source Gate Charge				20		
Q _{gd}	Gate-to-Drain "Miller" Charge			-	10	-	

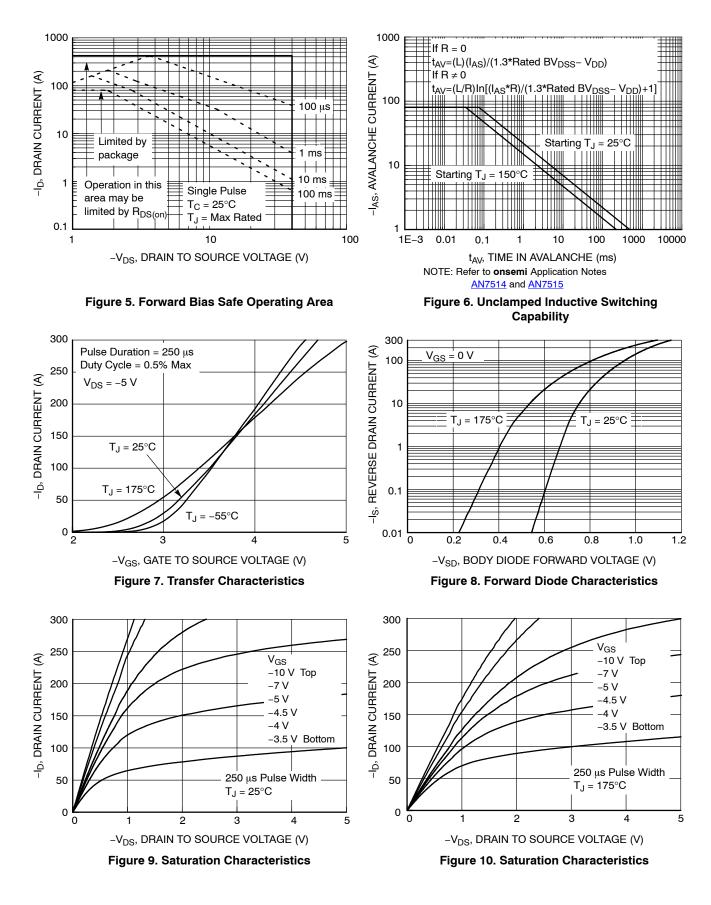
SWITCHING CHARACTERISTICS

t _{on}	Turn-On Time	$V_{DD} = -20 \text{ V}, \text{ I}_{D} = -80 \text{ A},$	-	-	23	ns
t _{d(on)}	Turn-On Delay Time	V_{GS} = –10 V, R_{GEN} = 6 Ω	-	10	-	
t _r	Rise Time		-	5	-	
t _{d(off)}	Turn-Off Delay Time		-	389	-	
t _f	Fall Time		-	114	-	
t _{off}	Turn-Off Time		-	-	780	

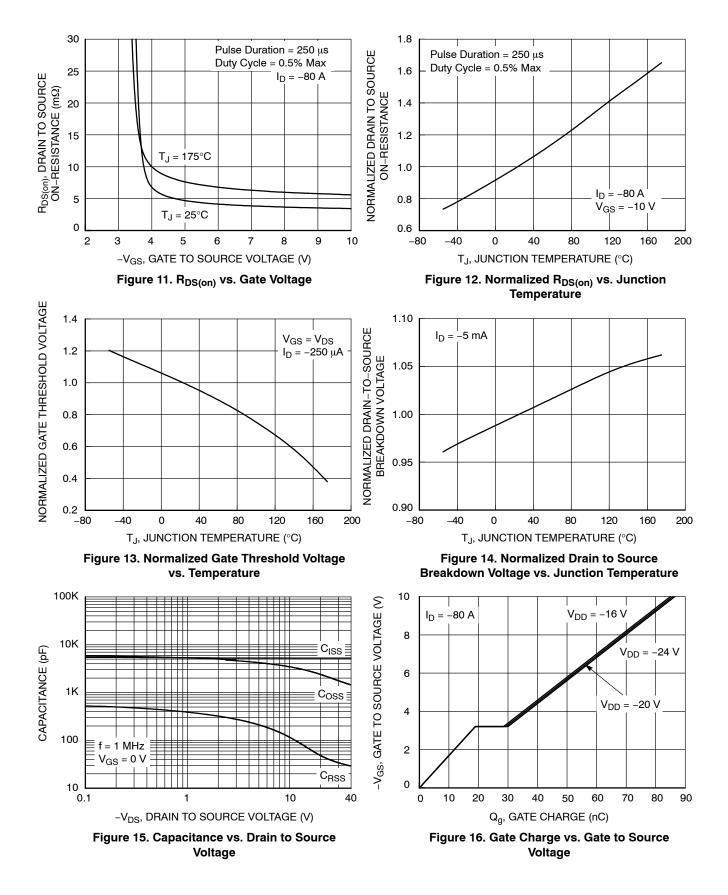
DRAIN-SOURCE DIODE CHARACTERISTICS


V _{SD}	Source-to-Drain Diode	$I_{SD} = -80 \text{ A}, V_{GS} = 0 \text{ V}$	_	-	-1.25	V
	Voltage	$I_{SD} = -40$ A, $V_{GS} = 0$ V	-	-	-1.2	
t _{rr}	Reverse Recovery Time	$I_{SD} = -80 \text{ A}, \Delta I_{SD} / \Delta t = 100 \text{ A} / \mu \text{s},$	-	82	107	ns
Q _{rr}	Reverse Recovery Charge	V _{DD} = -32 V	-	95	124	nC

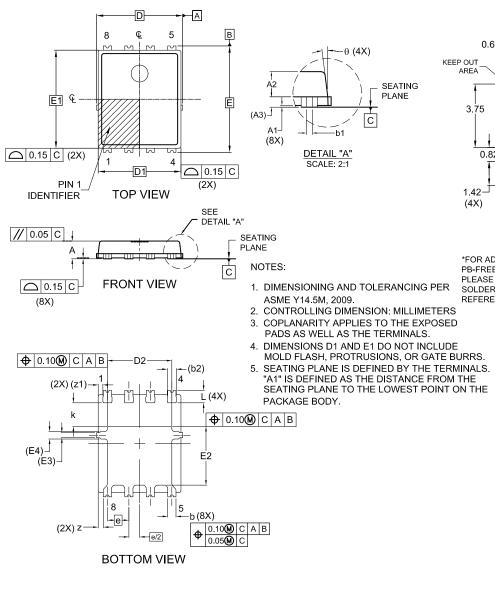
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

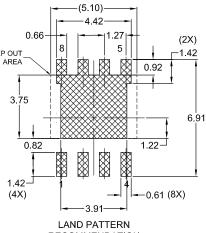

NOTE:

4. The maximum value is specified by design at $T_J = 175^{\circ}$ C. Product is not tested to this condition in production.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

DFNW8 5.2x6.3, 1.27P CASE 507AU **ISSUE A**

RECOMMENDATION *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS,

PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	N	IILLIMET	ERS
Divi	MIN.	NOM.	MAX.
A	0.90	1.00	1.10
A1	-	-	0.05
A2	0.65	0.75	0.85
A3	(0.30 REF	-
b	0.47	0.52	0.57
b1	0.13	0.18	0.23
b2		(0.54)	
D	5.00	5.10	5.20
D1	4.80	4.90	5.00
D2	3.72	3.82	3.92
E	6.20	6.30	6.40
E1	5.70	5.80	5.90
E2	3.38	3.48	3.58
E3		0.30 REF	-
E4	(0.45 REF	
е	1	1.27 BSC	;
e/2	(0.635BS	0
k	1.30	1.40	1.50
L	0.64	0.74	0.84
z	0.24	0.29	0.34
z1	(0.28)		
θ	0°		12°

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights or the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** produc

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B