ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

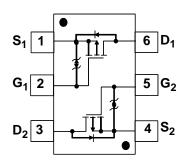
FDY1002PZ

Dual P-Channel (-1.5 V) Specified PowerTrench® MOSFET

–20 V, –0.83 A, 0.5 Ω

Features

- Max $r_{DS(on)} = 0.5 \Omega$ at $V_{GS} = -4.5 V$, $I_D = -0.83 A$
- Max $r_{DS(on)} = 0.7 \Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -0.70 \text{ A}$
- Max $r_{DS(on)} = 1.2 \Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -0.43 \text{ A}$
- Max $r_{DS(on)} = 1.8 \Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -0.36 \text{ A}$
- HBM ESD protection level = 1400 V (Note 3)
- RoHS Compliant


General Description

This Dual P-Channel MOSFET has been designed using ON Semiconductor's advanced Power Trench process to optimize the $r_{DS(on)}@V_{GS}=-1.5~V.$

Application

■ Li-Ion Battery Pack

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		-20	V
V_{GS}	Gate to Source Voltage		±8	V
	Drain Current -Continuous	(Note 1a)	-0.83	۸
ID	-Pulsed	(Note 1a) ±8 (Note 1a) -0.83 -1.0 (Note 1a) 0.625	-1.0	A
D	Power Dissipation	(Note 1a)	0.625	107
P_{D}	Power Dissipation	(Note 1b)	0.446	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

Ī	$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	200	°C/W
	$R_{\theta,IA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	280	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
G	FDY1002PZ	SC89-6	7 "	8 mm	3000 units

Electrical Characteristics T_J = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Off Characteristics								
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V		
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25 °C		-11		mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ		
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ		

On Characteristics (Note 2)

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25 °C		3		mV/°C
	Static Drain to Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -0.83 \text{ A}$		0.28	0.5	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -0.70 \text{ A}$		0.36	0.7	
r _{DO(})		$V_{GS} = -1.8 \text{ V}, I_D = -0.43 \text{ A}$		0.47	1.2	
r _{DS(on)}		$V_{GS} = -1.5 \text{ V}, I_D = -0.36 \text{ A}$		0.62	1.8	32
		$V_{GS} = -4.5 \text{ V}, I_D = -0.83 \text{ A},$ $T_J = 125 ^{\circ}\text{C}$		0.39	0.85	
9 _{FS}	Forward Transconductance	$V_{DD} = -5 \text{ V}, I_{D} = -0.83 \text{ A}$		2		S

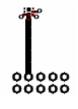
Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	100	135	pF
Coss	Output Capacitance		23	35	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1411 12	18	30	pF

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time		3.5	10	ns
t _r	Rise Time	$V_{DD} = -10 \text{ V}, I_{D} = -0.83 \text{ A}$	2.9	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	23	37	ns
t _f	Fall Time		13	23	ns
Q_g	Total Gate Charge		2.2	3.1	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -10 \text{ V}, I_{D} = -0.83 \text{ A}$	0.3		nC
Q_{gd}	Gate to Drain "Miller" Charge	$V_{GS} = -4.5 \text{ V}$	0.6		nC

Drain-Source Diode Characteristics and Maximum Rating


I_S	Maximum Continuous Drain-Source Diode Forward Current			-0.52	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.52 \text{ A}$ (Note 2)	-1.0) –1.2	V
t _{rr}	Reverse Recovery Time	$I_F = -0.83 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	18	31	ns
Q _{rr}	Reverse Recovery Charge		3.8	10	nC

Notes:

^{1.} R_{0,JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0,JA} is determined by the user's board design.

 a) 200 °C/W when mounted on a 1 in² pad of 2 oz copper.

b) 280 °C/W when mounted on a minimum pad of 2 oz copper.

^{2.} Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%

^{3.} The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25 °C unless otherwise noted

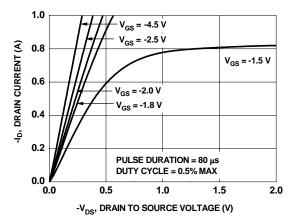


Figure 1. On Region Characteristics

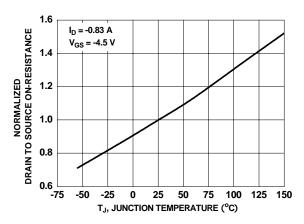


Figure 3. Normalized On Resistance vs Junction Temperature

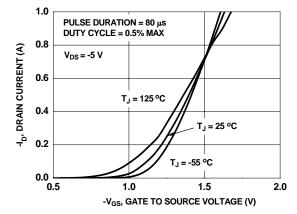


Figure 5. Transfer Characteristics

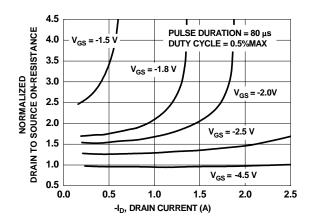


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

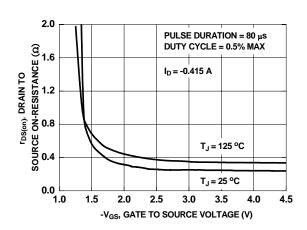


Figure 4. On-Resistance vs Gate to Source Voltage

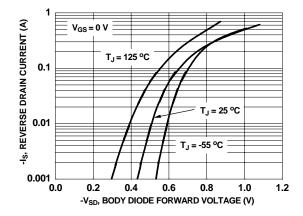


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted

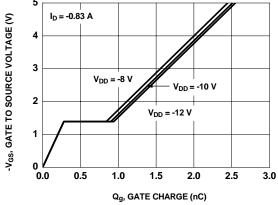


Figure 7. Gate Charge Characteristics

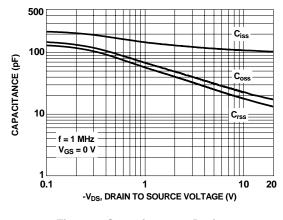


Figure 8. Capacitance vs Drain to Source Voltage

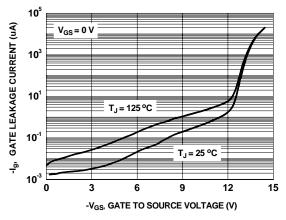


Figure 9. Gate Leakage Current vs Gate to Source Voltage

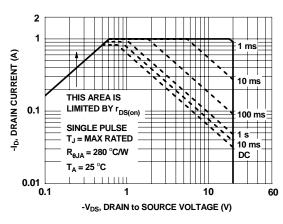


Figure 10. Forward Bias Safe Operating Area

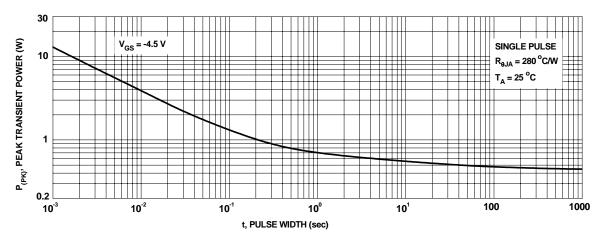


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25 °C unless otherwise noted

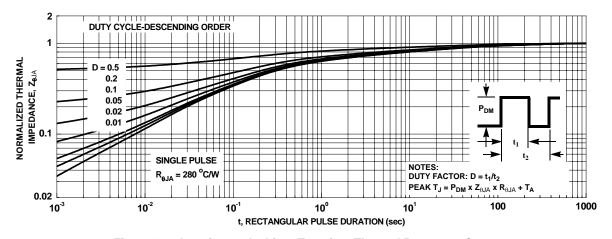


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7