

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

SEMICONDUCTOR®

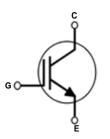
FGA180N33AT 330V, 180A PDP Trench IGBT

Features

- High Current Capability
- Low saturation voltage: V_{CE(sat)} =1.03V @ I_C = 40A
- High input impedance
- · RoHS compliant

Applications

PDP SYSTEM



General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

April 2008

Absolute Maximum Ratings

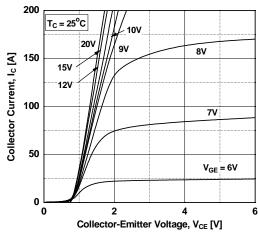
Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		330	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _C	Collector Current	@ T _C = 25 ^o C	180	A
I _{C pulse (1)}	Pulsed Collector Current	@ T _C = 25°C	450	А
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	390	W
	Maximum Power Dissipation	@ T _C = 100°C	156	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes:

1: Repetitive test, pulse width = 100usec, Duty = 0.1

* I_{C_}pulse limited by max Tj

Thermal Characteristics


Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.32	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

				Packaging				Qty per
Device Marking		Device	Package	Туре	Qty pe	er Tube	Box	
FGA180N33AT FGA180N33ATTU		TO-3P	TO-3P Tube		30ea		-	
Electric	al Cha	racteristics of th	ne IGBT T _{c = 2}	5°C unless otherwise noted				
Symbol		Parameter	Test	Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics							
BV _{CES}	Collector	to Emitter Breakdown Vo	Itage V _{GE} = 0V, I _C	e = 250μA	330	-	-	V
ICES		Cut-Off Current	V _{CE} = V _{CES}		-	-	250	μA
I _{GES}	G-E Leak	age Current	V _{GE} = V _{GES}		-	-	±400	nA
On Charac	toristics					1		1
V _{GE(th)}		G-E Threshold Voltage		$I_{\rm C}$ = 250uA, $V_{\rm CE}$ = $V_{\rm GE}$		4.0	5.5	V
	Collector to Emitter Saturation Voltage		I _C = 40A, V _G		-	1.1	1.4	V
			I _C = 180A, V	_{GE} = 15V,	-	1.68	-	V
			I _C = 180A, V T _C = 125°C	_{GE} = 15V	-	1.89	_	V
Dynamic C	haractoris	tion						1
C _{ies}	Input Cap			V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		3880	-	pF
C _{oes}	Output Ca	apacitance				305	-	pF
C _{res}	Reverse	Transfer Capacitance	f = 1MHz			180	-	pF
	Character							I
Switching t _{d(on)}		Delay Time			-	27	-	ns
t _r	Rise Time		$V_{\rm CC} = 200 V_{\rm cc}$	I _C = 40A,	-	80	-	ns
t _{d(off)}	Turn-Off I	Delay Time	$R_G = 5\Omega, V_G$	_{GE} = 15V, ad, T _C = 25 ^o C	-	108	-	ns
t _f	Fall Time			uu, 10 - 20 0	-	180	240	ns
t _{d(on)}	Turn-On I	Delay Time			-	26	-	ns
t _r	Rise Time	9	$V_{\rm CC} = 200V_{\rm CC}$	$I_{\rm C} = 40$ A,	-	75	-	ns
t _{d(off)}	Turn-Off I	Delay Time	R _G = 5Ω, V _G Resistive Lo	_{GE} = 15V, ad, T _C = 125°C	-	112	-	ns
t _f	Fall Time			J	-	250	300	ns
Qg	Total Gate	e Charge			-	169	-	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 200V,$	I _C = 40A,	-	22	-	nC
Q _{gc}	Gate to C	ollector Charge	vGE = 15V	V _{GE} = 15V		69	-	nC

FGA180N33AT 330V, 180A PDP Trench IGBT

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

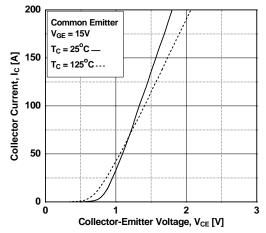
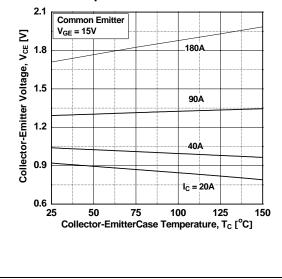
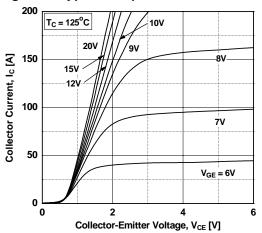
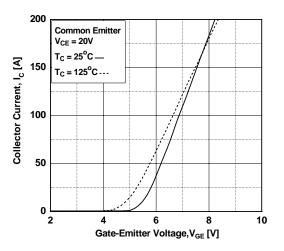
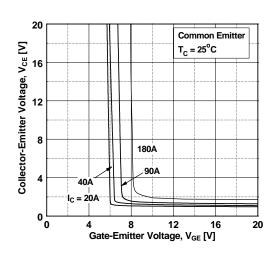
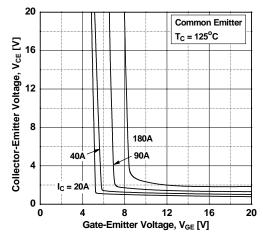




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics


Figure 6. Saturation Voltage vs. V_{GE}

FGA180N33AT 330V, 180A PDP Trench IGBT

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

Figure 9. Gate charge Characteristics

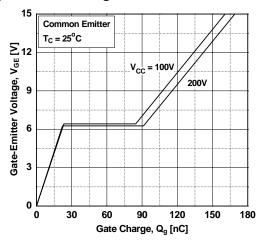
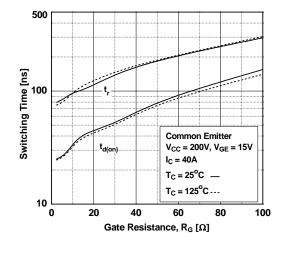
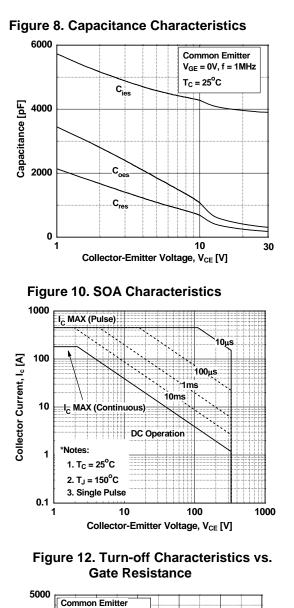
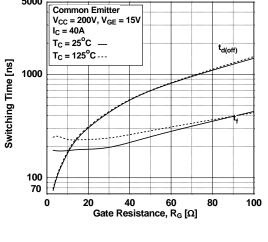
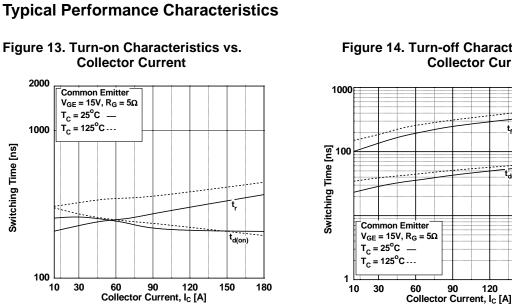
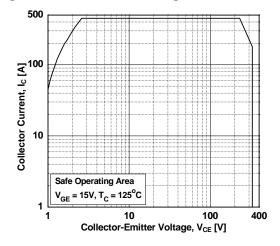
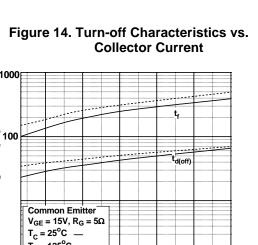
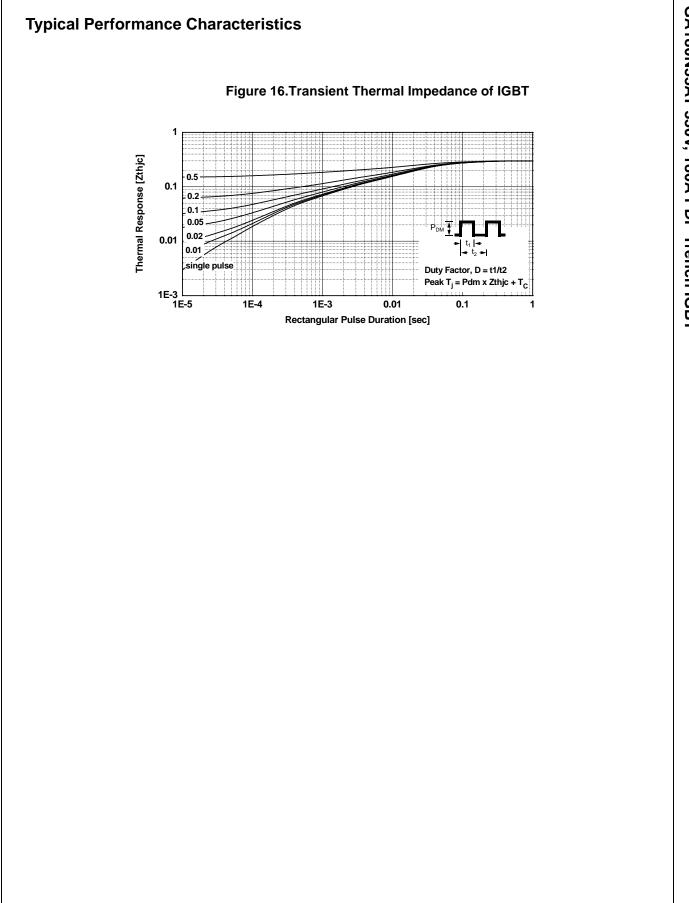
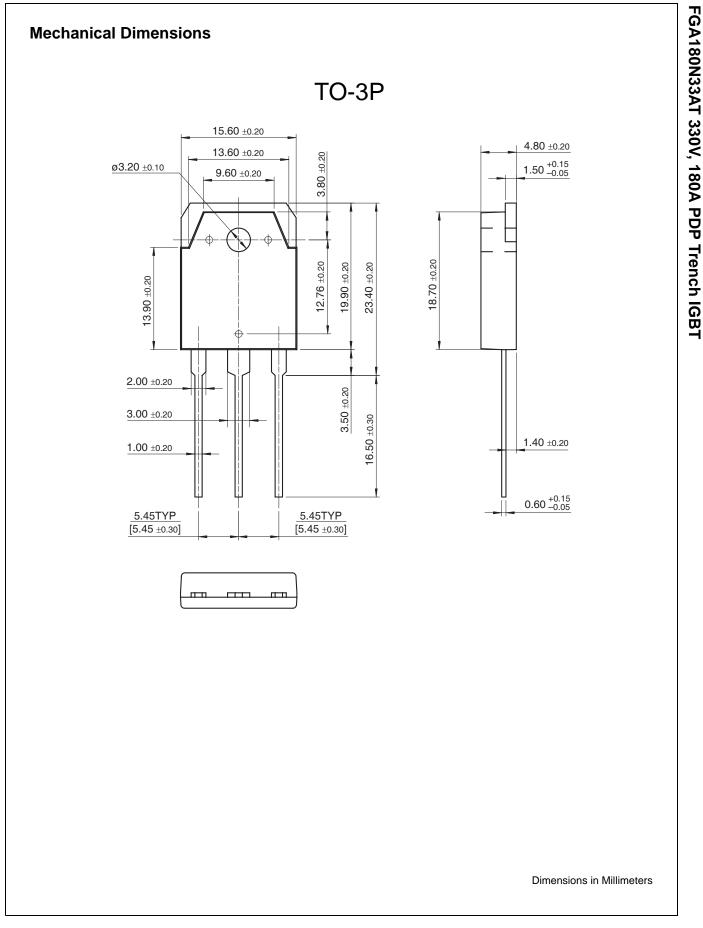





Figure 11. Turn-on Characteristics vs. Gate Resistance

FGA180N33AT Rev. A


Figure 15. Turn off Switching SOA Characteristics



150

180

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®	FPS™	PDP-SPM™	The Power Franchise [®]
Build it Now™	F-PFS™	Power-SPM [™]	^{the} uwer
CorePLUS™	FRFET [®]	PowerTrench [®]	franchise
CorePOWER™	Global Power Resource SM	Programmable Active Droop™	TinyBoost™
CROSSVOLT™	Green FPS™	QFET®	TinyBuck™
CTL™	Green FPS [™] e-Series [™]	QS™	TinyLogic [®]
Current Transfer Logic™	GTO™	Quiet Series™	TINYOPTO™
EcoSPARK®	IntelliMAX™	RapidConfigure™	TinyPower™
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a time™	TinyPWM™
EZSWITCH™ *	MegaBuck™	SmartMax™	TinyWire™
⊑7™	MICROCOUPLER™	SMART START™	µSerDes™
EZI [™] Fairchild [®]	MicroFET™	SPM [®]	W
F	MicroPak™	STEALTH™	SerDes"
Fairchild®	MillerDrive™	SuperFET™	UHC [®]
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM [™]	SuperSOT™-6	UniFET™
FACT®	OPTOLOGIC®	SuperSOT™-8	VCX™
FAST [®]	OPTOPLANAR®	SuperMOS™	VisualMax™
FastvCore™	() [®]		
FlashWriter [®] *		GENERAL	
	0		

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserve the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

PRODUCT STATUS DEFINITIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1