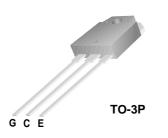
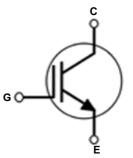
April 2008

FGA90N33AT 330V, 90A PDP Trench IGBT

Features

- High current capability
- Low saturation voltage: V_{CE(sat)} =1.1V @ I_C = 20A
- High input impedance
- Fast switching
- RoHS compliant


Applications


PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

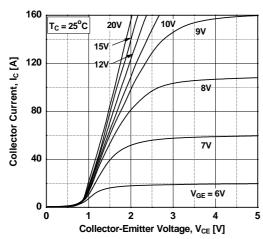
Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		330	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _C	Collector Current	@ T _C = 25°C	90	A
I _{C pulse(1)}	Pulsed Collector Current	@ T _C = 25 ^o C	220	A
I _{C pulse(2)}	Pulsed Collector Current	@ T _C = 25°C	330	А
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	223	W
	Maximum Power Dissipation	@ T _C = 100°C	89	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.56	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

Notes:


Repetitive test , Pulse width=100usec , Duty=0.1
Half sine wave , D<0.01, Pulse width<5usec

⁽²⁾ Half sine wave , D<0.01, P *I_C pluse limited by max Tj

		Device	Package	Packaging Package Type		Qty per Tube		Max Qty per Box	
		TO-3P	TO-3P Tube		30ea		-		
Electric	al Chai	racteristics of t	he IGBT _{Tc=}	25°C unless otherwise noted					
Symbol		Parameter	Tes	t Conditions	Min.	Тур.	Max.	Units	
Off Charac	teristics								
BV _{CES}	Collector	to Emitter Breakdown V	oltage V _{GE} = 0V,	l _C = 250μA	330	-	-	V	
I _{CES}		Cut-Off Current	-	_s , V _{GE} = 0V	-	-	250	μA	
I _{GES}	G-E Leak	age Current		_S , V _{CE} = 0V	-	-	±400	nA	
								<u> </u>	
On Charac		shold Voltage	lc = 250µA	, V _{CE} = V _{GE}	2.5	4.0	5.5	V	
GL(III)			I _C = 20A, V		-	1.1	1.4	V	
V _{CE(sat)} Colle		Collector to Emitter Saturation Voltage		_{GE} = 15V,	_	1.3	_	V	
	Collector			_{GE} = 15V,	-	1.6	-	V	
		I _C = 90A, V T _C = 125°C	_{GE} = 15V, C	-	1.7	-	V		
Dynamic C	haracteris	tics							
C _{ies}	Input Cap				-	2200	-	pF	
C _{oes}	Output Ca	apacitance	$V_{CE} = 30V_{,}$	$V_{GE} = 0V,$	-	135	-	pF	
C _{res}	Reverse ⁻	Fransfer Capacitance	f = 1MHz		-	100	-	pF	
Switching	Characteri	etice	I		-				
t _{d(on)}		Delay Time				23	-	ns	
t _r	Rise Time			V, $I_{\rm C} = 20$ A,	-	40	-	ns	
t _{d(off)}	Turn-Off	Delay Time	$R_G = 5\Omega, V$ Resistive I	/ _{GE} = 15V, .oad, T _C = 25 ^o C	-	100	-	ns	
t _f	Fall Time	-			-	180	240	ns	
t _{d(on)}		Delay Time			-	20	-	ns	
t _r	Rise Time)	V _{CC} = 200V, I _C = 20A, R _G = 5Ω, V _{GE} = 15V,	$V, I_{\rm C} = 20A,$	-	40	-	ns	
t _{d(off)}	Turn-Off	Delay Time	$R_{G} = 5\Omega, V$ Resistive L	′ _{GE} = 15∨, .oad, T _C = 125°C	-	110	-	ns	
t _f	Fall Time			, <u> </u>	-	250	300	ns	
Q _g	Total Gate	e Charge			-	95	-	nC	
Q _{ge}	Gate to E	mitter Charge		V, I _C = 20A,	-	12	-	nC	
Q _{gc}	Gate to C	ollector Charge	V _{GE} = 15V		-	40	-	nC	

Typical Performance Characteristics

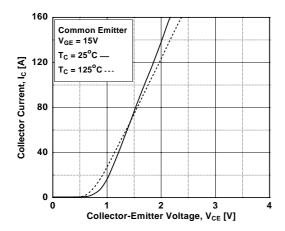


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

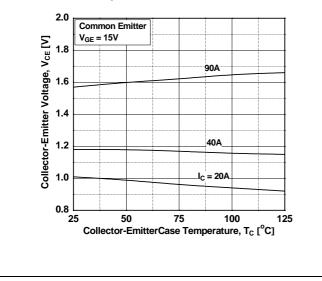


Figure 2. Typical Output Characteristics

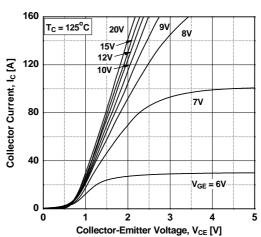


Figure 4. Transfer Characteristics

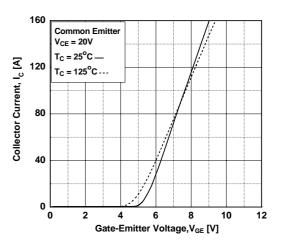
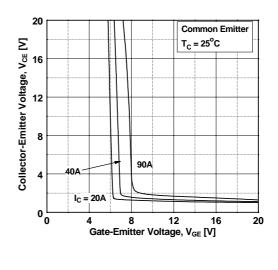



Figure 6. Saturation Voltage vs. V_{GE}

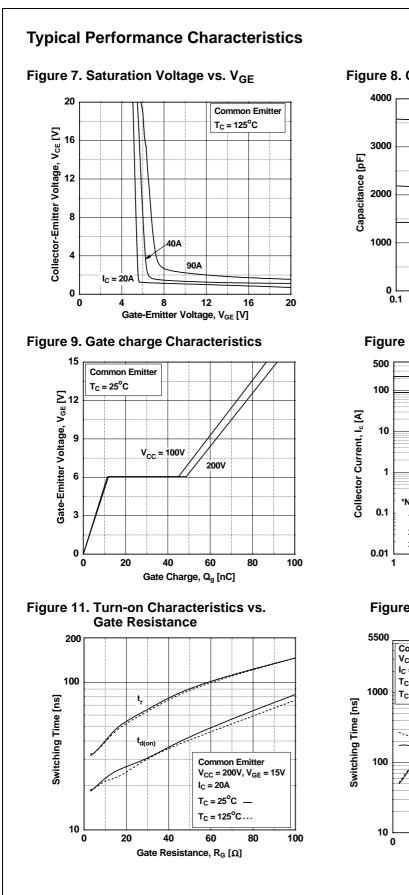


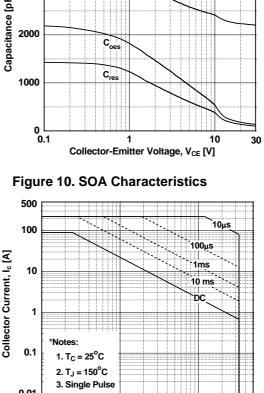
Figure 8. Capacitance Characteristics

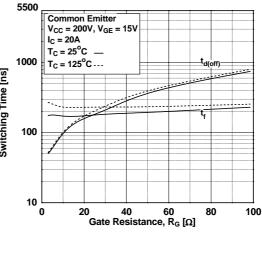
Cies

Common Emitter

 $T_C = 25^{\circ}C$

V_{GE} = 0V, f = 1MHz



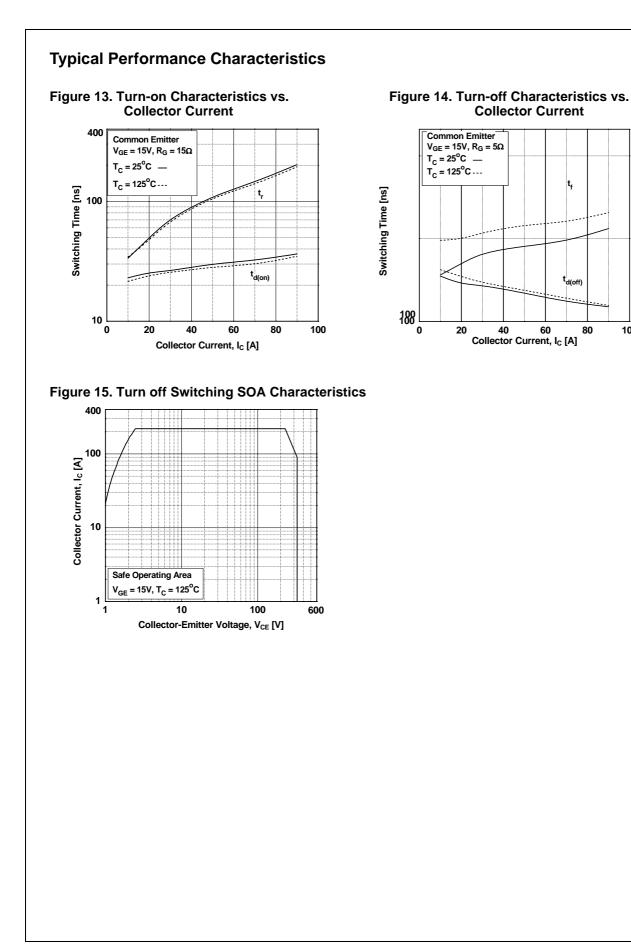

Figure 12. Turn-off Characteristics vs. Gate Resistance

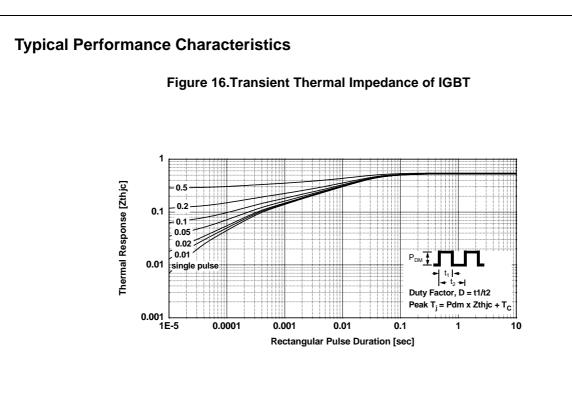
Collector-Emitter Voltage, VCE [V]

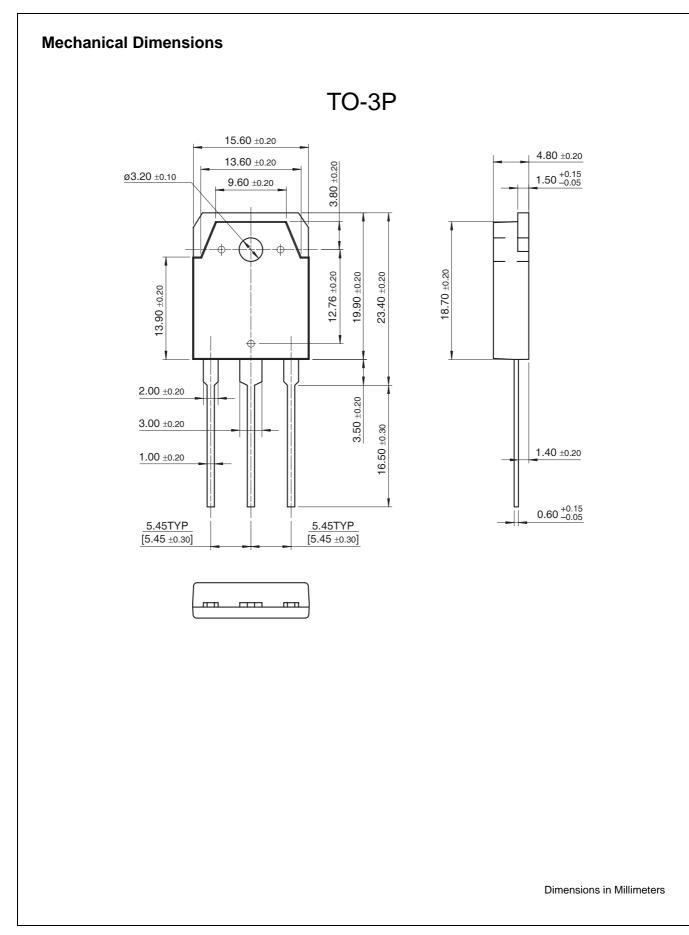
100

500

10


FGA90N33AT 330V, 90A PDP Trench IGBT


t,


t_{d(off)}

80

100

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] CorePOWER[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

FPS™ F-PFS™ FRFFT® Global Power ResourceSM Green FPS[™] Green FPS[™] e-Series[™] GTO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax[™] Motion-SPM[™] **OPTOLOGIC® OPTOPLANAR[®]** R

PDP-SPM™ Power-SPM™ PowerTrench[®] Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT™-8 SuperMOS™

The Power Franchise[®] Pranchise TinyBoost[™] TinyBuck[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPWM[™] TinyWire[™] µSerDes[™]

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E CPH6531-TL-E NCP4683DSQ28T1G MC78L08ACP SA5230DR2G NCP694D25HT1G CAT25020VE-GT3 MC10EP142FAG CAT1832L-G