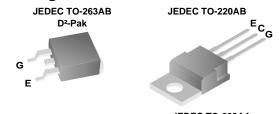


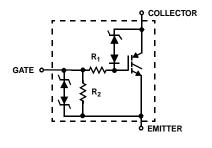
ON Semiconductor

FGB3040G2-F085 / FGD3040G2-F085 FGP3040G2-F085 / FGI3040G2-F085

EcoSPARK®2 300mJ, 400V, N-Channel Ignition IGBT

Features


- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- RoHS Compliant


Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

Package Symbol

Device Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	400	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10mA)	28	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	300	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy (Note 2)	170	mJ
I _{C25}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 25°C	41	Α
I _{C110}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 110°C	25.6	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
D	Power Dissipation Total, at T _C = 25°C	150	W
P_D	Power Dissipation Derating, for T _C > 25°C	1	W/°C
TJ	Operating Junction Temperature Range	-55 to +175	°C
T _{STG}	Storage Junction Temperature Range	-55 to +175	°C
T _L	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10s)	300	°C
T _{PKG}	Reflow soldering according to JESD020C	260	°C
ESD	HBM-Electrostatic Discharge Voltage at100pF, 1500Ω	4	kV
ESD	CDM-Electrostatic Discharge Voltage at 1Ω	2	kV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGB3040G2	FGB3040G2-F085	TO-263AB	330mm	24mm	800
FGD3040G2	FGD3040G2-F085	TO-252AA	330mm	16mm	2500
FGP3040G2	FGP3040G2-F085	TO-220AB	Tube	N/A	50
FGI3040G2	FGI3040G2-F085	TO-262AA	Tube	N/A	50

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol Parameter Test Conditions Min Typ Max Units
--

Off State Characteristics

BV _{CER}	Collector to Emitter Breakdown Voltage	$I_{CE} = 2\text{mA}, V_{GE} = 0,$ $R_{GE} = 1K\Omega,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		370	400	430	٧
BV _{CES}	Collector to Emitter Breakdown Voltage	$T_{\rm J} = -40 \text{ to } 150^{\rm o}\text{C}$		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_{CE} = -20 \text{mA}, V_{GE} = 0 \text{V},$ $T_{J} = 25 ^{\circ} \text{C}$		28	-	1	٧
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ±2mA		±12	±14	-	V
	Collector to Emitter Leakage Current	V_{CE} = 250V, R_{GE} = 1K Ω	$T_{J} = 25^{\circ}C$	-	-	25	μΑ
ICER	Collector to Emitter Leakage Current		$T_{J} = 150^{\circ}C$	-	-	1	mA
	Emitter to Collector Leakage Current	V _{EC} = 24V,	$T_{J} = 25^{\circ}C$	-	-	1	mA
I _{ECS}	Limiter to Collector Leakage Current		$T_{J} = 150^{\circ}C$	-	-	40	IIIA
R ₁	Series Gate Resistance		•	-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On State Characteristics

$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$	$T_J = 25^{\circ}C$	1	1.15	1.25	٧
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	I_{CE} = 10A, V_{GE} = 4.5V,	$T_J = 150^{\circ}C$	-	1.35	1.50	V
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$	$T_J = 150^{\circ}C$	-	1.68	1.85	V
E _{SCIS}	Self Clamped Inductive Switching	L = 3.0 mHy,RG = 1K Ω , VGE = 5V, (Note 1)	TJ = 25°C	-	-	300	mJ

Thermal Characteristics

R ₀ JC Thermal Resistance Junction to Case	-	-	1	°C/W
---	---	---	---	------

Notes:

1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS} =14.2A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.

2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS} =10.8A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.

Max Units

Min

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter

Dynamic Characteristics							
Q _{G(ON)}	Gate Charge	I _{CE} = 10A, V _{CE} = 12V, V _{GE} = 5V		-	21	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	11ac = 1m4 Vac = Vac	$T_J = 25^{\circ}C$ $T_J = 150^{\circ}C$	1.3 0.75	1.7 1.2	2.2 1.8	V
V_{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A	1 -	-	2.8	-	V

Test Conditions

Switching Characteristics

Symbol

$t_{d(ON)R}$	Current Turn-On Delay Time-Resistive	02 . 2	-	0.9	4	μS
t _{rR}	Current Rise Time-Resistive	$V_{GE} = 5V, R_{G} = 1K\Omega$ $T_{J} = 25^{\circ}C,$	1	1.9	7	μS
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	OL ,	-	4.8	15	μS
t _{fL}	Current Fall Time-Inductive	$V_{GE} = 5V, R_{G} = 1K\Omega$ $I_{CE} = 6.5A, T_{J} = 25^{\circ}C,$	-	2.0	15	μS

Typical Performance Curves

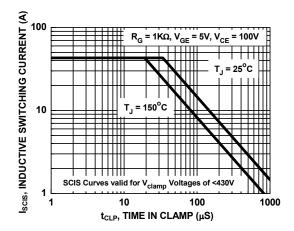


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

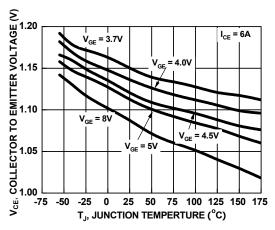


Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

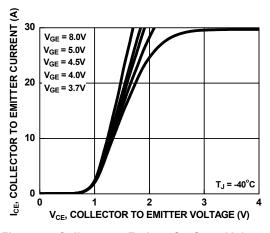


Figure 5. Collector to Emitter On-State Voltage vs. Collector Current

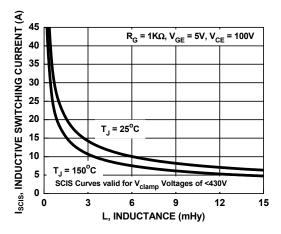


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

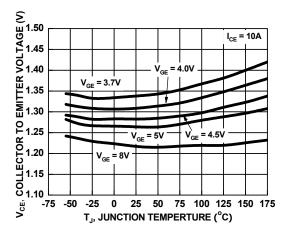


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

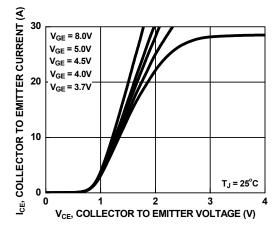


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

Typical Performance Curves (Continued)

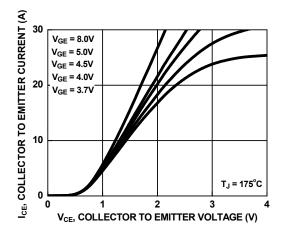


Figure 7. Collector to Emitter On-State Voltage vs. Collector Current

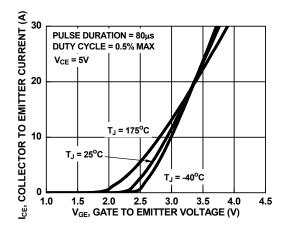


Figure 8. Transfer Characteristics

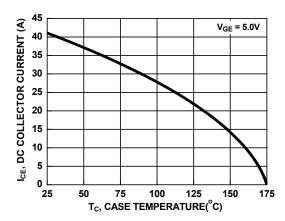


Figure 9. DC Collector Current vs. Case Temperature

Figure 10. Gate Charge

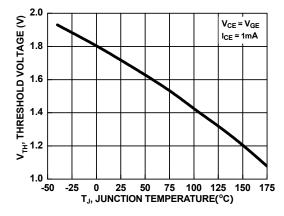
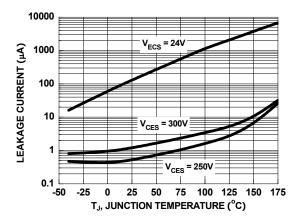
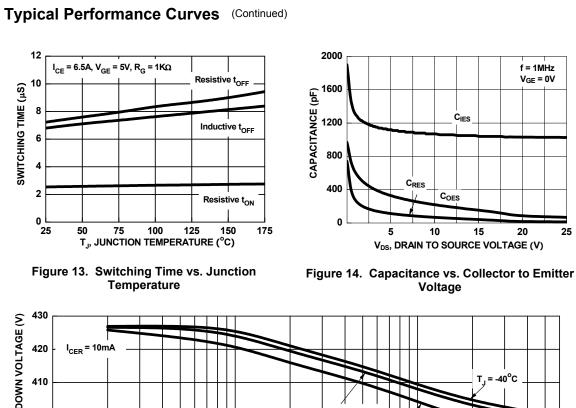


Figure 11. Threshold Voltage vs. Junction Temperature




Figure 12. Leakage Current vs. Junction Temperature

f = 1MHz

 $V_{GE} = 0V$

20

25

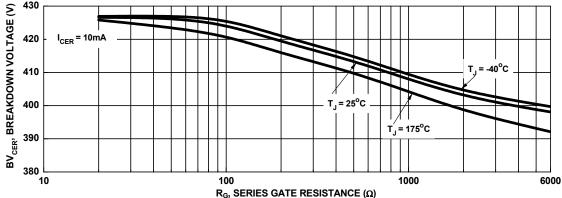


Figure 15. Break down Voltage vs. Series Gate Resistance

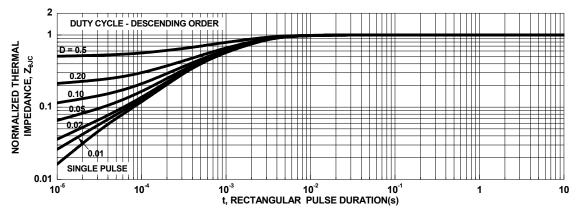


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

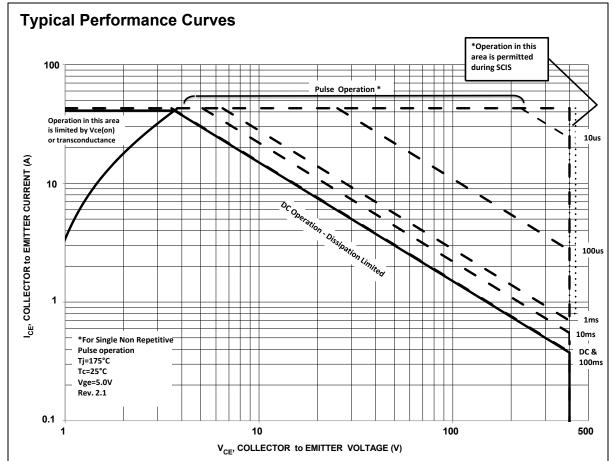


Figure 17. Forward Safe Operating Area

Test Circuit and Waveforms

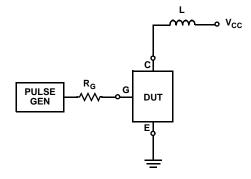


Figure 18. Inductive Switching Test Circuit

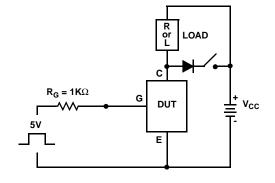


Figure 19. t_{ON} and t_{OFF} Switching Test Circuit

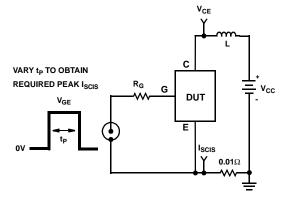


Figure 20. Energy Test Circuit

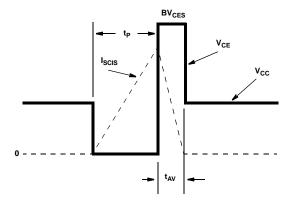


Figure 21. Energy Waveforms

ON Semiconductor and (II) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC

www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 IGP30N60H3XKSA1
 STGB15H60DF
 STGFW20V60DF

 STGFW30V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085
 APT25GN120BG
 APT30GN60BDQ2G
 APT30GN60BDQ2G

 APT30GN60BG
 APT30GS60BRDQ2G
 APT30N60BC6
 APT35GP120JDQ2
 APT36GA60B
 APT45GR65B2DU30

 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30
 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IDW40E65D2

 SGB15N120ATMA1
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F
 IGW40N120H3FKSA1

 RJH60D7BDPQ-E0#T2
 APT40GR120B