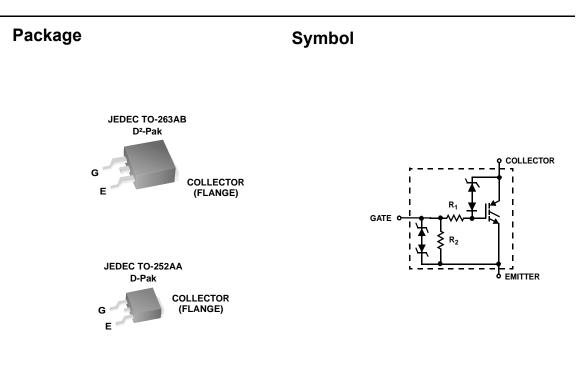


ON Semiconductor[®]

FGD3245G2-F085 / FGB3245G2-F085 EcoSPARK[®]2 320mJ, 450V, N-Channel Ignition IGBT

Features

- SCIS Energy = 320mJ at T_J = 25°C
- Logic Level Gate Drive
- Low Saturation Voltage
- Qualified to AEC Q101
- RoHS Compliant


Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

General Description

The FGB3245G2-F085 and FGD3245G2 are N-channel IGBTs designed in ON Semiconductor's EcoSPARK-2 technology which helps in eliminating external protection circuitry. The technology is optimized for driving the coil in the harsh environment of automotive ignition systems and offers out-standing Vsat and SCIS Energy capability also at elevated operating temperatures. The logic level gate input is ESD protected and features an integrated gate resistor. An inte-grated zener-circuitry clamps the IGBT's collecter- to-emit-ter voltage at 450V which enables systems requiring a higher spark voltage

@2014 Semiconductor Components Industries, LLC. August-2017, Rev. 3

Symbol	Parameter	Rating	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	450	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10mA)	28	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	320	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy (Note 2)	180	mJ
I _{C25}	Collector Current Continuous, at V _{GE} = 4.0V, T _C = 25°C	23	А
I _{C110}	Collector Current Continuous, at V _{GE} = 4.0V, T _C = 110°C	23	А
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
D	Power Dissipation Total, at T _C = 25°C	150	W
PD	Power Dissipation Derating, for T _C > 25°C	1.1	W/ºC
ТJ	Operating Junction Temperature Range	-40 to +175	°C
T _{STG}	Storage Junction Temperature Range	-40 to +175	°C
ΤL	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10s)	300	°C
Т _{РКG}	Max. Lead Temp. for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at100pF, 1500 Ω	4	kV
ESD	CDM-Electrostatic Discharge Voltage at 1Ω	2	kV

Package Marking and Ordering Information

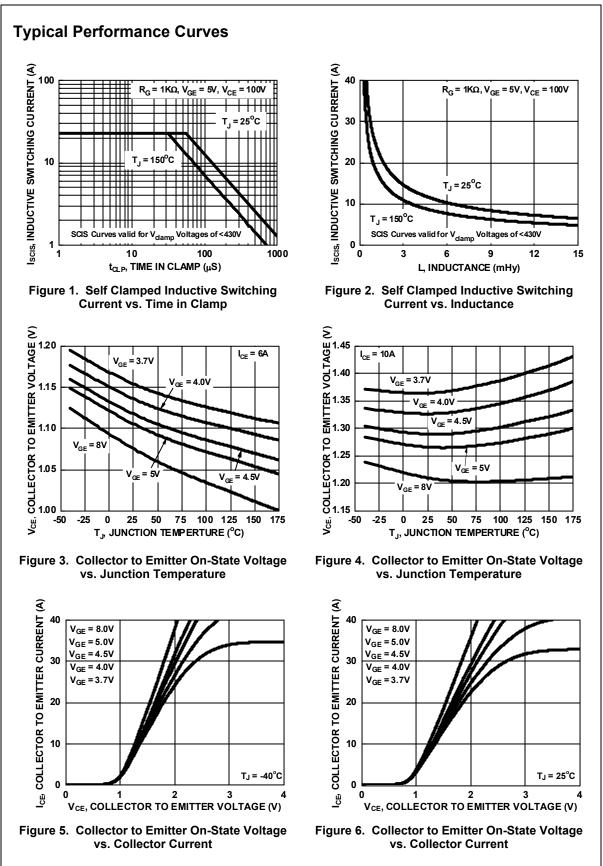
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGD3245G2	FGD3245G2-F085	TO252AA	330mm	16mm	2500 units
FGB3245G2	FGB3245G2-F085	TO263AB	330mm	24mm	800 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol Parameter Test Conditions Min Typ Max Units
--

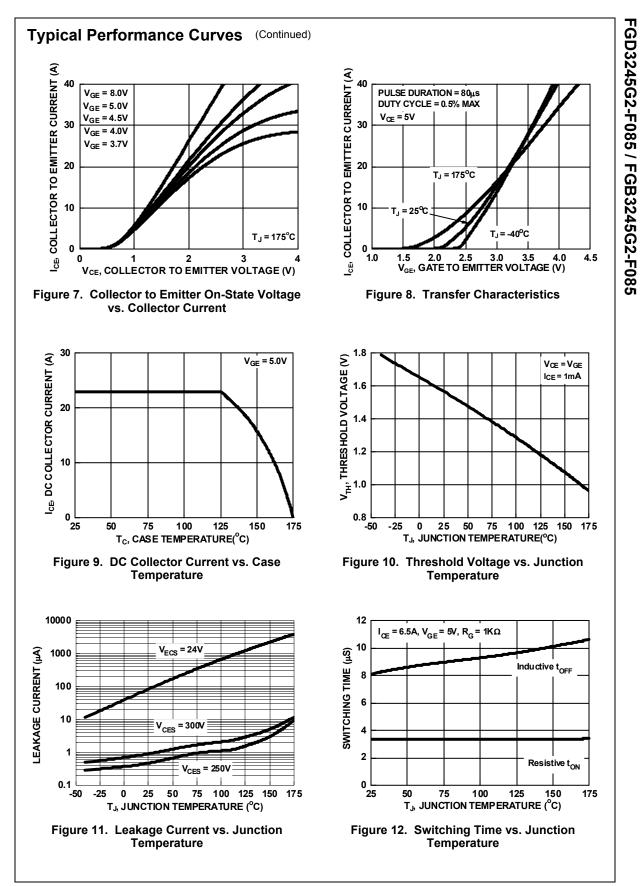
Off State Characteristics

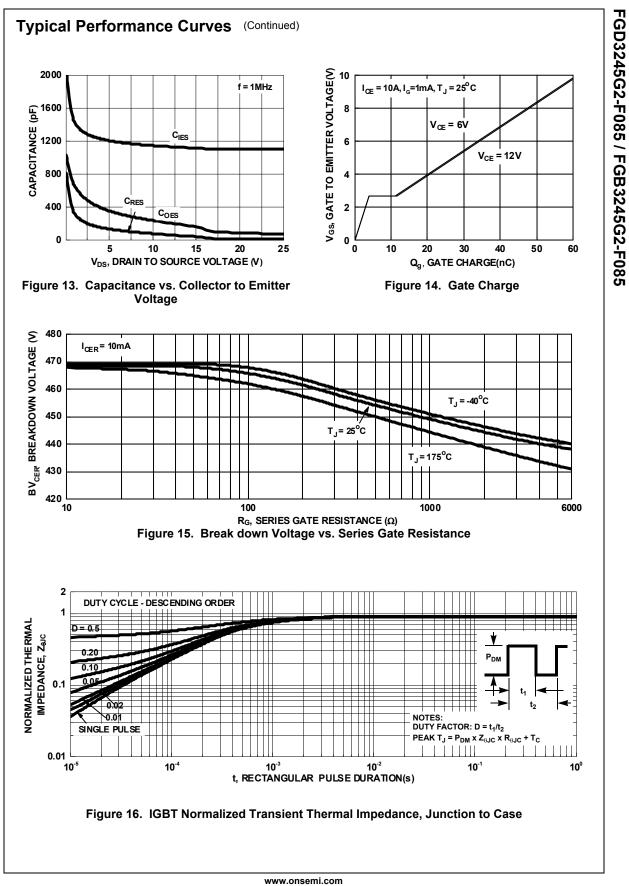
Collector to Emitter Breakdown Voltage	I _{CE} = 2mA, V _{GE} = 0, R _{GE} = 1KΩ, T _J = -40 to 150°C		420	-	480	v
Collector to Emitter Breakdown Voltage	$I_{CE} = 10mA, V_{GE} = 0V,$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		440	-	500	V
Emitter to Collector Breakdown Voltage	I _{CE} = -75mA, V _{GE} = 0V, T _J = 25°C		28	-	-	V
Gate to Emitter Breakdown Voltage	I _{GES} = ±2mA		±12	±14	-	V
Collector to Emitter Leakage Current	V _{CE} = 250V, R _{GE} = 1KΩ	T _J = 25°C	-	-	25	μA
		T _J = 150°C	-	-	1	mA
Emitter to Collector Lookago Current	V _{EC} = 24V,	T _J = 25°C	-	-	1	mA
		T _J = 150 ^o C	-	-	40	ША
Series Gate Resistance		•	-	120	-	Ω
Gate to Emitter Resistance			10K	-	30K	Ω
	Collector to Emitter Breakdown Voltage Emitter to Collector Breakdown Voltage Gate to Emitter Breakdown Voltage Collector to Emitter Leakage Current Emitter to Collector Leakage Current Series Gate Resistance	Collector to Emitter Breakdown Voltage $R_{GE} = 1K\Omega$, $T_J = -40 to 150°C$ Collector to Emitter Breakdown Voltage $I_{CE} = 10mA$, $V_{GE} = 0V$, $R_{GE} = 0$, $T_J = -40 to 150°C$ Emitter to Collector Breakdown Voltage $I_{CE} = -75mA$, $V_{GE} = 0V$, $T_J = 25°C$ Gate to Emitter Breakdown Voltage $I_{GES} = \pm 2mA$ Collector to Emitter Leakage Current $V_{CE} = 250V$, $R_{GE} = 1K\Omega$ Emitter to Collector Leakage Current $V_{EC} = 24V$,Series Gate Resistance $V_{EC} = 24V$,	$ \begin{array}{c c} \mbox{Collector to Emitter Breakdown Voltage} & R_{GE}^{C} = 1K\Omega, \\ T_J = -40 \ to \ 150^{\circ}\text{C} \\ \hline T_J = -40 \ to \ 150^{\circ}\text{C} \\ \hline T_J = -40 \ to \ 150^{\circ}\text{C} \\ \hline T_C = 10\text{mA}, \ V_{GE} = 0\text{V}, \\ R_{GE} = 0, \\ T_J = -40 \ to \ 150^{\circ}\text{C} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{Emitter Breakdown Voltage} & I_{CE} = -75\text{mA}, \ V_{GE} = 0\text{V}, \\ \hline T_J = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{Gate to Emitter Breakdown Voltage} & I_{GES} = \pm 2\text{mA} \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \begin{array}{c} \mbox{Collector to Emitter Leakage Current} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{V}_{CE} = 250\text{V}, \ R_{GE} = 1\text{K}\Omega \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{T}_J = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{F}_J = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{F}_J = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{F}_J = 25^{\circ}\text{C} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\			

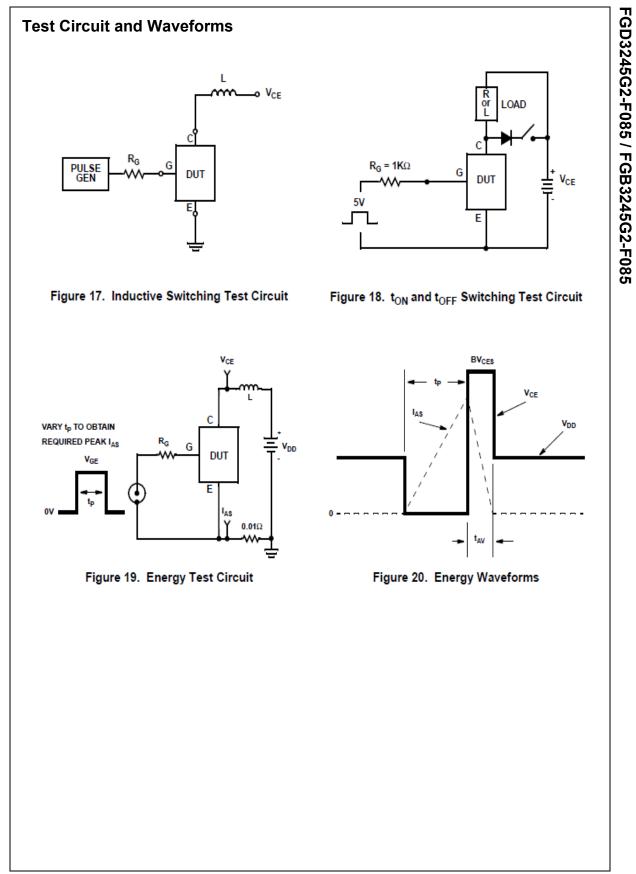

On State Characteristics

V _{CE(SAT}	Collector to Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$	$T_J = 25^{\circ}C$	-	1.13	1.25	V
V _{CE(SAT}	Collector to Emitter Saturation Voltage	I _{CE} = 10A, V _{GE} = 4.5V,	T _J = 150 ^o C	-	1.32	1.50	V
V _{CE(SAT}	Collector to Emitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$	T _J = 150 ^o C	-	1.64	1.85	V

Symbol	Parameter	Test Conditions		Min	Тур	Мах	Units	
Dynam	ic Characteristics							
Q _{G(ON)}	Gate Charge	I _{CE} = 10A, V _{CE} = 12V, V _{GE} = 5V		-	23	-	nC	
V	Gate to Emitter Threshold Voltage	I_{CE} = 1mA, V_{CE} = V_{GE}	$T_{\rm J} = 25^{\circ}$	$T_{J} = 25^{\circ}C$	1.3	1.6	2.2	v
V _{GE(TH)}	Cale to Emilier Threshold Voltage		T _J = 150 ^o C	0.75	1.1	1.8	v	
V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A		-	2.7	-	V	
t _{d(ON)R}	ing Characteristics Current Turn-On Delay Time-Resistive			-	0.9	4	μS	
t _{rR}	Current Rise Time-Resistive	$V_{GE} = 5V, R_G = 1K\Omega$ T ₁ = 25°C,		-	2.6	7	μS	
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,		-	5.4	15	μS	
	Current Fall Time-Inductive	V _{GE} = 5V, R _G = 1KΩ I _{CE} = 6.5A, T _J = 25°C,		-	2.7	15	μS	
t _{fL}		$L = 3.0 \text{ mHy}, RG = 1K\Omega$,				320		


Notes:


1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 320 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS}=14.6A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp. 2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 180 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS}=10.9A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.



FGD3245G2-F085 / FGB3245G2-F085

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardles against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death as

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC

www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A FGH60T65SHD_F155 APT100GT60B2RG APT13GP120BG APT20GN60BG APT20GT60BRDQ1G APT25GN120B2DQ2G APT35GA90BD15 APT36GA60BD15 APT40GP60B2DQ2G APT40GP90B2DQ2G APT50GN120B2G APT50GT60BRG APT64GA90B2D30 APT70GR120J NGTB10N60FG NGTB30N60L2WG IGP30N60H3XKSA1 STGB15H60DF STGFW20V60DF STGFW30V60DF STGFW40V60F STGWA25H120DF2 FGB3236_F085 APT25GN120BG APT25GR120S APT30GN60BDQ2G APT30GN60BG APT30GP60BG APT30GS60BRDQ2G APT30N60BC6 APT35GP120JDQ2 APT36GA60B APT45GR65B2DU30 APT50GP60B2DQ2G APT68GA60B APT70GR65B APT70GR65B2SCD30 GT50JR22(STA1ES) TIG058E8-TL-H IDW40E65D2 SGB15N120ATMA1 NGTB50N60L2WG STGB10H60DF STGB20V60F STGB40V60F STGFW80V60F IGW40N120H3FKSA1 RJH60D7BDPQ-E0#T2 APT40GR120B