IGBT - Field Stop 600 V, 20 A

FGH20N60UFD

Description

Using novel field stop IGBT Technology, ON Semiconductor's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Features

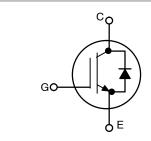
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 20 \text{ A}$
- High Input Impedance
- Fast Switching
- This Device is Pb-Free and is RoHS Compliant

Applications

• Solar Inverter, UPS, Welder, PFC

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CES}	600	V
Gate to Emitter Voltage	V_{GES}	±20	V
Transient Gate to Emitter Voltage		±30	
Collector Current @ Tc = 25°C @ Tc = 100°C	I _C	40 20	A
Pulsed Collector Current @ Tc = 25°C	I _{CM} (Note 1)	60	Α
Diode Forward Current @ Tc = 25°C @ Tc = 100°C	I _F	20 10	Α
Pulsed Diode Maximum Forward Current	I _{FM} (Note 1)	60	Α
Maximum Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	165 66	W
Operating Junction Temperature	T_J	-55 to + 150	°C
Storage Temperature Range	T _{stg}	-55 to + 150	°C
Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds	T _L	300	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: Pulse width limited by max. junction temperature.

ON Semiconductor®

www.onsemi.com

TO-247-3LD CASE 340CK

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

FGH20N60UFD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ heta JC}$	_	0.76	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ heta JC}$	_	2.51	°C/W
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH20N60UFDTU	FGH20N60UFD	TO-247	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V, } I_{C} = 250 \mu\text{A}$	600	_	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_{CES}/\Delta T_{J}$	$V_{GE} = 0 \text{ V, } I_{C} = 250 \mu\text{A}$	-	0.6	_	V/°C
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
G-E Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICs						
G-E Threshold Voltage	V _{GE(th)}	$I_C = 250 \mu A, V_{CE} = V_{GE}$	4.0	5.0	6.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 20 A, V _{GE} = 15 V	_	1.8	2.4	V
		I _C = 20 A, V _{GE} = 15 V, T _C = 125°C	-	2.0	-	V
DYNAMIC CHARACTERISTICS		-				
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	_	940	-	pF
Output Capacitance	C _{oes}	1	_	110	-	pF
Reverse Transfer Capacitance	C _{res}	1	_	40	_	pF
SWITCHING CHARACTERISTICS		-				
Turn-On Delay Time	t _{d(on)}	V _{CC} = 400 V, I _C = 20 A,	_	13	-	ns
Rise Time	t _r	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	_	17	-	ns
Turn-Off Delay Time	t _{d(off)}	1	_	87	-	ns
Fall Time	t _f	1	_	32	64	ns
Turn-On Switching Loss	E _{on}	1	_	0.38	_	mJ
Turn-Off Switching Loss	E _{off}	1	_	0.26	-	mJ
Total Switching Loss	E _{ts}	1	_	0.64	-	mJ
Turn-On Delay Time	t _{d(on)}	V _{CC} = 400 V, I _C = 20 A,	_	13	-	ns
Rise Time	t _r	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 125^{\circ}C$	_	16	-	ns
Turn-Off Delay Time	t _{d(off)}	1	_	92	-	ns
Fall Time	t _f	1	_	63	-	ns
Turn-On Switching Loss	E _{on}	1	_	0.41	-	mJ
Turn-Off Switching Loss	E _{off}		_	0.36	-	mJ
Total Switching Loss	E _{ts}		_	0.77	-	mJ
Total Gate Charge	Qg	V _{CE} = 400 V, I _C = 20 A, V _{GE} = 15 V	-	63	-	nC
Gate to Emitter Charge	Q _{ge}	†	_	7	-	nC
Gate to Collector Charge	Q _{qc}	1	_	32	_	nC

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_J = 25^{\circ}C$ unless otherwise noted)

Parametr	Symbol	Test Conditions		Min	Тур	Max	Unit
Diode Forward Voltage	V_{FM}	I _F = 10 A	T _C = 25°C	_	1.9	2.5	V
			T _C = 125°C	_	1.7	_	
Diode Reverse Recovery Time	t _{rr}	$I_F = 10 \text{ A, } di_F/dt = 200 \text{ A}/\mu\text{s}$	T _C = 25°C	_	34	_	ns
			T _C = 125°C	_	57	_	
Diode Reverse Recovery Charge	Q _{rr}		T _C = 25°C	_	41	_	nC
			T _C = 125°C	-	96	_	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

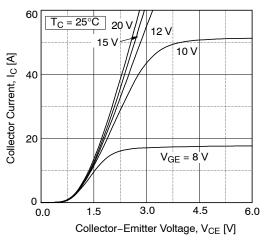


Figure 1. Typical Output Characteristics

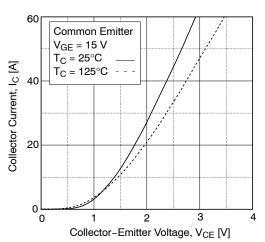


Figure 3. Typical Saturation Voltage Characteristics

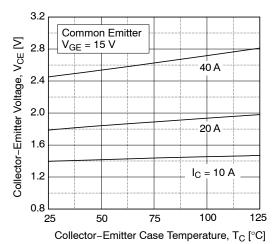


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

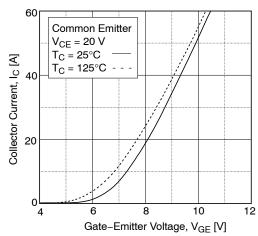


Figure 4. Transfer Characteristics

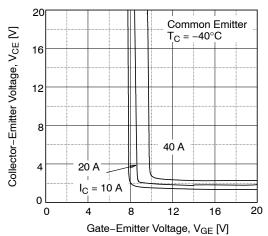


Figure 6. Saturation Voltage vs. V_{GE}

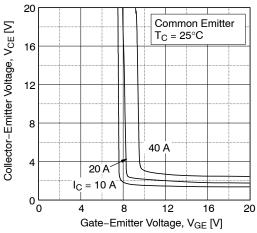


Figure 7. Saturation Voltage vs. V_{GE}

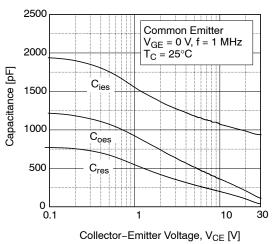


Figure 9. Capacitance Characteristics

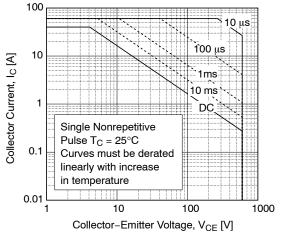


Figure 11. SOA Characteristics

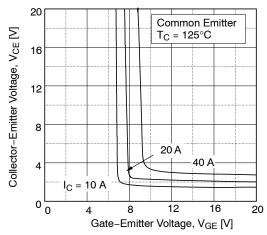


Figure 8. Saturation Voltage vs. V_{GE}

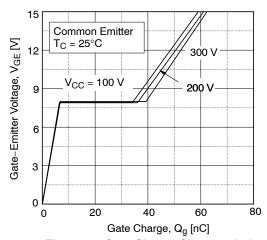


Figure 10. Gate Charge Characteristics

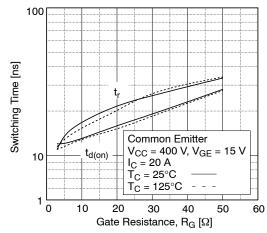


Figure 12. Turn-on Characteristics vs. Gate Resistance

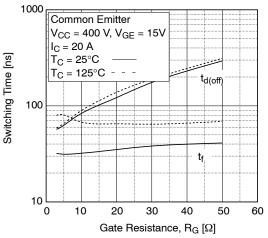


Figure 13. Turn-off Characteristics vs. Gate Resistance

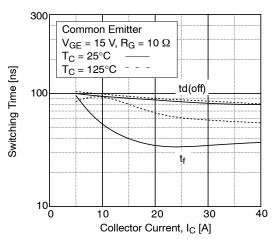


Figure 15. Turn-off Characteristics vs.
Collector Current

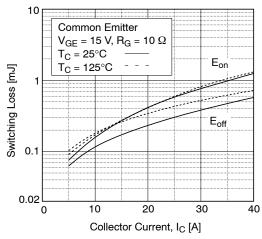


Figure 17. Switching Loss vs. Collector Current

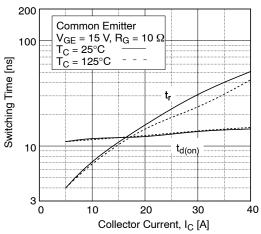


Figure 14. Turn-on Characteristics vs. Collector Current

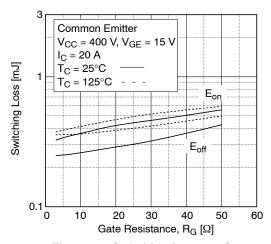


Figure 16. Switching Loss vs. Gate Resistance

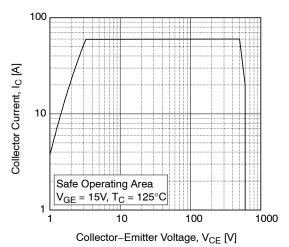


Figure 18. Turn-off Switching SOA Characteristics

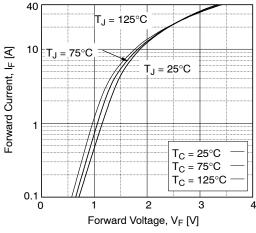


Figure 19. Forward Characteristics

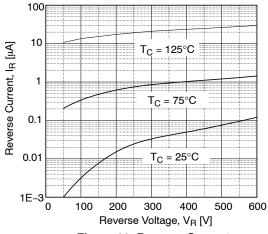


Figure 20. Reverse Current

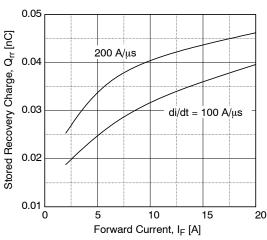


Figure 21. Stored Charge

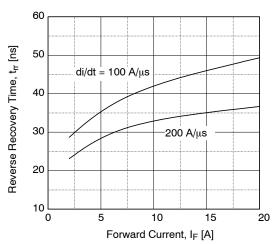


Figure 22. Reverse Recovery Time

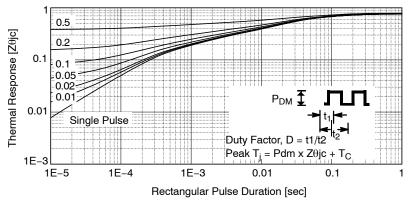
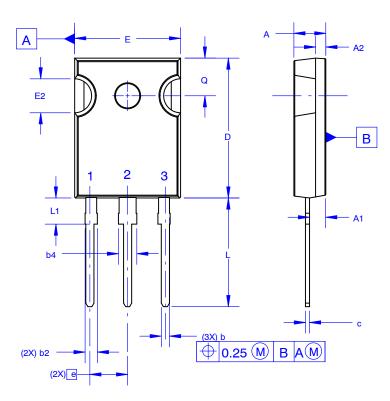



Figure 23. Transient Thermal Impedance of IGBT

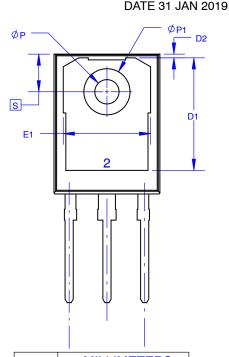
TO-247-3LD SHORT LEAD

CASE 340CK ISSUE A

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code


A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIIVI	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D	20.32	20.57	20.82		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E	15.37	15.62	15.87		
E1	12.81	?	~		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	15.75	16.00	16.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
ØP1	6.60	6.80	7.00		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD SHORT LEAD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG
 RJH60F3DPQ-A0#T0

 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG
 IXA30RG1200DHGLB

 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 IHFW40N65R5SXKSA1
 APT70GR120J
 APT35GP120JDQ2

 IKZA40N65RH5XKSA1
 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65EH5XKSA1
 IKFW40N65ES5XKSA1

 IKFW60N65ES5XKSA1
 IMBG120R090M1HXTMA1
 IMBG120R220M1HXTMA1
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1

 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1
 HGTG40N60B3
 FGH60N60SMD_F085

 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2
 IKP20N60TXKSA1

 IHW20N65R5XKSA1
 IDW40E65D2FKSA1