IGBT - Field Stop, Trench 650 V, 40 A

FGH40T65SHDF

Description

Using novel field stop IGBT technology, ON Semiconductor's new series of field stop $3^{\text {rd }}$ generation IGBTs offer superior conduction and switching performance and easy parallel operation. This device is well suited for the resonant or soft switching application such as induction heating and MWO.

Features

- Maximum Junction Temperature: $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=1.45 \mathrm{~V}(\mathrm{Typ}). @ \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$
- 100% of the Parts Tested for I_{LM} (Note 1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

Applications

- Induction Heating, MWO

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

TO-247-3LD CASE 340CH

MARKING DIAGRAM

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Description	Symbol	FGH40T65SHDF-F155	Unit
Collector to Emitter Voltage	$\mathrm{V}_{\text {CES }}$	650	V
Gate to Emitter Voltage	$V_{G E S}$	± 20	V
Transient Gate to Emitter Voltage		± 30	V
Collector Current $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{C}	80	A
Collector Current $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		40	A
Pulsed Collector Current (Note 1) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ILM	120	A
Pulsed Collector Current (Note 2)	$\mathrm{I}_{\text {cm }}$	120	A
Diode Forward Current $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{F}	40	A
Diode Forward Current $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		20	A
Pulsed Diode Maximum Forward Current	$\mathrm{I}_{\text {FM }}$	60	A
Maximum Power Dissipation $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	268	W
Maximum Power Dissipation $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		134	W
Operating Junction Temperature	T_{J}	-55 to +175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds	T_{L}	300	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=120 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=30 \Omega$, Inductive Load
2. Repetitive Rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Parameter	Symbol	FGH40T65SHDF-F155	Unit
Thermal Resistance, Junction to Case (IGBT)	$\mathrm{R}_{\theta \mathrm{\theta C}}$	0.56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case (Diode)	$\mathrm{R}_{\theta \mathrm{\theta C}}$	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\theta \mathrm{\theta A}}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGH40T65SHDF	FGH40T65SHDF-F155	TO-247-3LD	-	-	30

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Parameter | Symbol | Test Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

OFF CHARACTERISTICS					
Collector to Emitter Breakdown Voltage	$\mathrm{BV}_{\mathrm{CES}}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	650	-	-
Temperature Coefficient of Breakdown Voltage	$\Delta \mathrm{BV}_{\mathrm{CES}} / \Delta \mathrm{T}_{\mathrm{J}}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.6	
Collector Cut-Off Current	$\mathrm{I}_{\mathrm{CES}}$	$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CES}}, \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	-	-	250
G-E Leakage Current	$\mathrm{I}_{\mathrm{GES}}$	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GES}}, \mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$	-	-	± 400

ON CHARACTERISTICS

G-E Threshold Voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{th})}$	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	3.5	5.5	7.5	V
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}(\text { sat })}$	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	1.45	1.85	V
			$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	1.8	-

FGH40T65SHDF

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	$\mathrm{C}_{\text {ies }}$	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	1982	-	pF
Output Capacitance	$\mathrm{C}_{\text {oes }}$		-	70	-	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {res }}$		-	25	-	pF

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$\mathrm{T}_{\mathrm{d}(\text { on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=6 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \text { Inductive Load, } \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	-	18	-	ns
Rise Time	T_{r}		-	27	-	ns
Turn-Off Delay Time	$\mathrm{T}_{\mathrm{d} \text { (off) }}$		-	64	-	ns
Fall Time	T_{f}		-	3	-	ns
Turn-On Switching Loss	$\mathrm{E}_{\text {on }}$		-	1.22	-	mJ
Turn-Off Switching Loss	$\mathrm{E}_{\text {off }}$		-	0.44	-	mJ
Total Switching Loss	$\mathrm{E}_{\text {ts }}$		-	1.66	-	mJ
Turn-On Delay Time	$\mathrm{T}_{\mathrm{d} \text { (on) }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=6 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \text { Inductive Load, } \mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \end{aligned}$	-	18	-	ns
Rise Time	T_{r}		-	31	-	ns
Turn-Off Delay Time	$\mathrm{T}_{\mathrm{d} \text { (off) }}$		-	70	-	ns
Fall Time	T_{f}		-	56	-	ns
Turn-On Switching Loss	$\mathrm{E}_{\text {on }}$		-	1.78	-	mJ
Turn-Off Switching Loss	$\mathrm{E}_{\text {off }}$		-	0.78	-	mJ
Total Switching Loss	$\mathrm{E}_{\text {ts }}$		-	2.56	-	mJ
Total Gate Charge	Q_{g}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	68	-	nC
Gate to Emitter Charge	Q_{ge}		-	12	-	nC
Gate to Collector Charge	Q_{gc}		-	25	-	nC

ELECTRICAL CHARACTERISTICS OF THE DIODE ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
Diode Forward Voltage	V_{FM}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	1.5	1.95	V
			$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	1.37	-	
Reverse Recovery Energy	$\mathrm{E}_{\text {rec }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}, \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mathrm{s} \mathrm{~s} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	153	-	$\mu \mathrm{J}$
Diode Reverse Recovery Time	Trr		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	101	-	ns
			$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	238	-	
Diode Reverse Recovery Charge	Q_{rr}		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	343	-	nC
			$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	1493	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 1. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 5. Saturation Voltage vs V_{GE}

Figure 2. Typical Output Characteristics

Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 6. Saturation Voltage vs V_{GE}

FGH40T65SHDF

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Capacitance Characteristics

Figure 9. Turn-On Characteristics vs. Gate Resistance

Figure 11. Switching Loss vs. Gate Resistance

Figure 8. Gate Charge Characteristics

Figure 10. Turn-Off Characteristics vs. Gate Resistance

Figure 12. Turn-On Characteristics vs. Collector Current

FGH40T65SHDF

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 13. Turn-Off Characteristics vs. Collector Current

Figure 15. Load Current vs. Frequency

Figure 17. Forward Characteristics

Figure 14. Switching Loss vs. Collector Current

Figure 16. SOA Characteristics

Figure 18. Reverse Recovery Current

FGH40T65SHDF

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 19. Reverse Recovery Time

Figure 20. Stored Charge

Figure 21. Transient Thermal Impedance of IGBT

Figure 22. Transient Thermal Impedance of Diode

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD

FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC
MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DATE 09 OCT 2019

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	4.58	4.70	4.82
A1	2.29	2.475	2.66
A2	1.40	1.50	1.60
D	20.32	20.57	20.82
E	15.37	15.62	15.87
E2	4.96	5.08	5.20
e	\sim	5.56	\sim
L	19.75	20.00	20.25
L1	3.69	3.81	3.93
DP	3.51	3.58	3.65
Q	5.34	5.46	5.58
S	5.34	5.46	5.58
b	1.17	1.26	1.35
b2	1.53	1.65	1.77
b4	2.42	2.54	2.66
c	0.51	0.61	0.71
D1	13.08	\sim	\sim
D2	0.51	0.93	1.35
E1	12.81	\sim	\sim
ϕ P1	6.61	6.73	6.85

| DOCUMENT NUMBER: | 98AON13853G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-247-3LD | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

