IGBT - SMPS 300 V

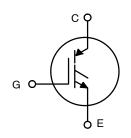
FGH50N3

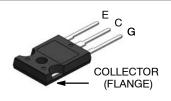
Description

Using ON Semiconductor's planar technology, this IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential. This device has been optimized for medium frequency switch mode power supplies.

Features

- Low Saturation Voltage: V_{CE(sat)} = 1.4 V Max
- Low $E_{OFF} = 6.6 \text{ uJ/A}$
- SCWT = 8 μ s @ = 125°C
- 300 V Switching SOA Capability
- Positive Temperature Coefficient above 50 A
- This is a Pb–Free Device


Applications


• SMPS

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Ratings	Unit	
Collector to Emitter Breakdown Voltage	BV _{CES}	300	V	
Collector Current Continuous	Tc = 25°C	Ι _C	75	А
	Tc = 110°C		75	А
Collector Current Pulsed (Note 1)		I _{CM}	240	A
Gate to Emitter Voltage Continuous	V _{GES}	±20	V	
Gate to Emitter Voltage Pulsed	V _{GEM}	±30	V	
Switching Safe Operating Area at $T_J = 150^{\circ}C$, Figure 2	SSOA	150 A at 300 V		
Single Pulse Avalanche Energy, I_{CE} = 30 A, L = 1.78 mH, V_{DD}	E _{AS}	800	mJ	
Single Pulse Reverse Avalanche Energy, I_{EC} = 30 A, L = 1.78	E _{ARV}	800	mJ	
Power Dissipation Total	Tc = 25°C	PD	463	W
Power Dissipation Derating	Tc > 25°C		3.7	W/°C
Operating Junction Temperature Range	TJ	-55 to +150	°C	
Storage Temperature Range Range	T _{STG}	-55 to +150	°C	
Short Circuit Withstand Time (Note 2)		t _{SC}	8	μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Pulse width limited by maximum junction temperature.
V_{CE(PK)} = 180 V, T_J = 125°C, V_{GE} = 12 Vdc, R_G = 5 Ω

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Tape Width	Quantity	
FGH50N3	FGH50N3	TO-247	N/A	30	

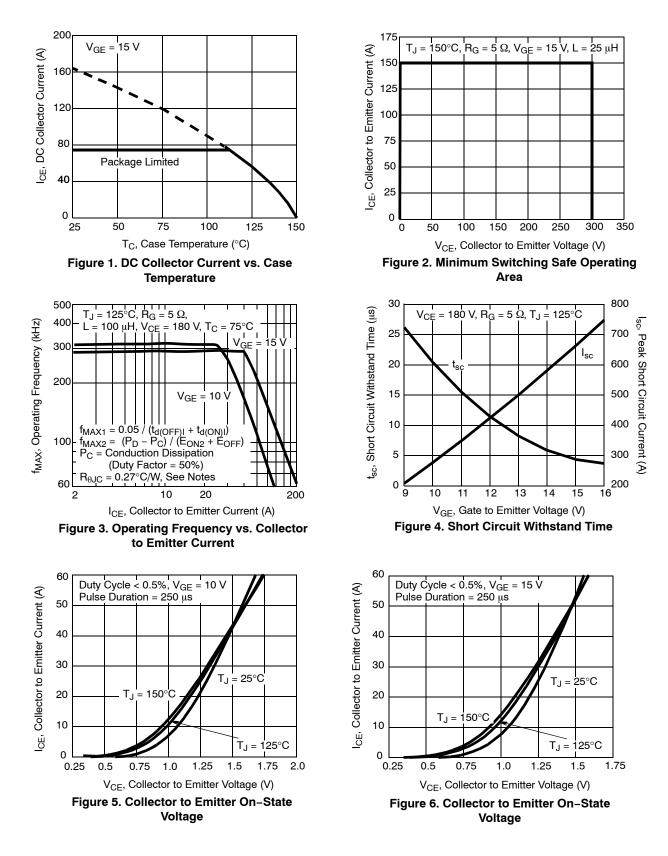
THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Thermal Resistance, Junction-Case	$R_{\theta JC}$	TO-247	-	-	0.27	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF STATE CHARACTERISTICS							
Collector to Emitter Breakdown Voltage	BV _{CES}	I_{CE} = 250 μ A, V_{GE} = 0 V,		300	-	-	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I_{EC} = 10 mA, V_{GE} = 0 V		15	-	-	V
Collector to Emitter Leakage Current	I _{CES}	V _{CE} = 300 V	$T_J = 25^{\circ}C$	-	-	250	μΑ
			T _J = 125°C	-	-	2.0	mA
Gate to Emitter Leakage Current	I _{GES}	V _{GE} = ±20 V		_	-	±250	nA
ON STATE CHARACTERISTICs				-			-
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I_{CE} = 30 A, V_{GE} = 15 V	$T_J = 25^{\circ}C$	-	1.30	1.4	V
			T _J = 125°C	-	1.25	1.4	V
DYNAMIC CHARACTERISTICS				-			-
Gate Charge	Q _{G(ON)}	I_{CE} = 30 A, V_{CE} = 150 V	V _{GE} = 15 V	-	180	-	nC
			V _{GE} = 20 V	-	228	-	nC
Gate to Emitter Threshold Voltage	V _{GE(TH)}	I_{CE} = 250 μ A, V_{CE} = V_{GE}	•	4.0	4.8	5.5	V
Gate to Emitter Plateau Voltage	V _{GEP}	I _{CE} = 30 A, V _{CE} = 150 V		-	7.0	-	V

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (continued)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS						
Switching SOA	SSOA	$\begin{array}{l} T_{J} = 150^{\circ}C, \ R_{G} = 5 \ \Omega, \ V_{GE} = 15 \ V, \\ L = 25 \ \mu H, \ V_{CE} = 300 \ V \end{array}$	150	-	-	A
Current Turn-On Delay Time	t _{d(ON)}	IGBT and Diode at $T_J = 25^{\circ}C$,	-	20	-	ns
Current Rise Time	t _{rl}	I _{CE} = 30 A, V _{CE} = 180 V,	-	15	-	ns
Current Turn-Off Delay Time	t _{d(OFF)} I	V _{GE} = 15 V, R _G = 5 Ω, ,	-	135	-	ns
Current Fall Time	t _{fl}	L = 100 μH, Test Circuit – Figure 20	-	12	-	ns
Turn-On Energy (Note 3)	E _{ON2}	Test Circuit – Tigure 20	-	130	-	μJ
Turn-Off Energy Loss (Note 4)	E _{OFF}		_	92	120	μJ
Current Turn-On Delay Time	t _{d(ON)}	IGBT and Diode at $T_J = 125^{\circ}C$, $I_{CE} = 30 \text{ A}$, $V_{CE} = 180 \text{ V}$, $V_{GE} = 15 \text{ V}$, $R_G = 5 \Omega$, $L = 100 \mu$ H, Test Circuit – Figure 20	-	19	-	ns
Current Rise Time	t _{rl}		-	13	-	ns
Current Turn-Off Delay Time	t _{d(OFF)} I		-	155	190	ns
Current Fall Time	t _{fl}		_	7	15	ns
Turn-On Energy (Note 3)	E _{ON2}		_	225	270	μJ
Turn-Off Energy (Note 4)	E _{OFF}		-	135	200	μJ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. E_{ON2} is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_J as the IGBT. The diode type is specified in Figure 20.

Turn-Off Energy Loss (E_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($I_{CE} = 0$ A). All devices were tested per JEDEC Standard No. 24–1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. 4.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) (continued)

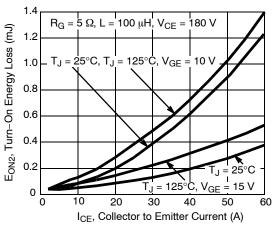


Figure 7. Turn-On Energy Loss vs. Collector to Emitter Current

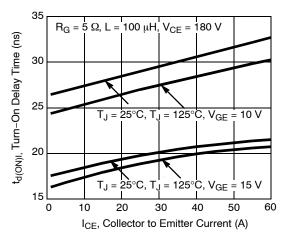
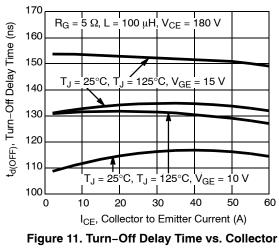
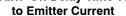
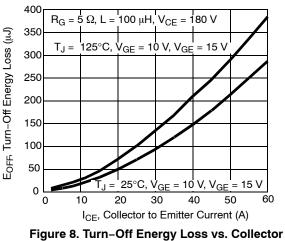
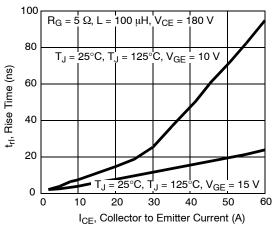
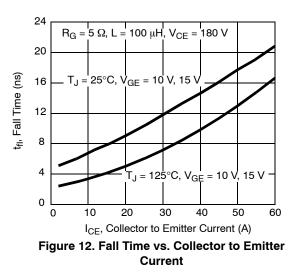
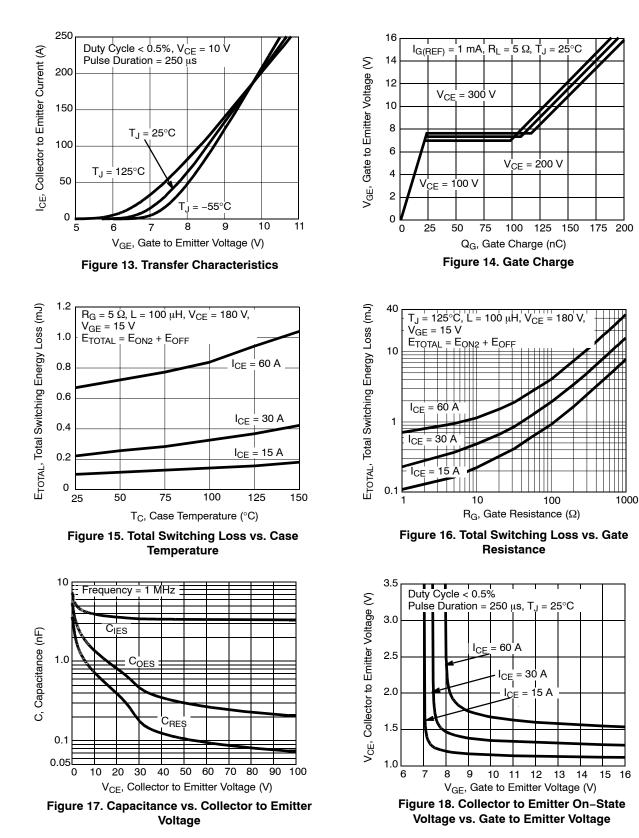
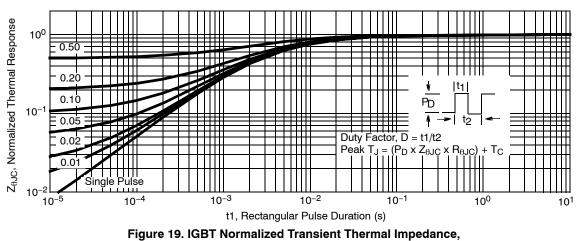





Figure 9. Turn-On Delay Time vs. Collector to Emitter Current

to Emitter Current


Figure 10. Turn-On Rise Time vs. Collector to Emitter Current

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) (continued)

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Junction to Case

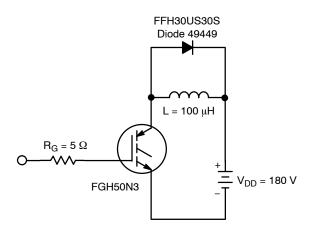


Figure 20. Inductive Switching Test Circuit

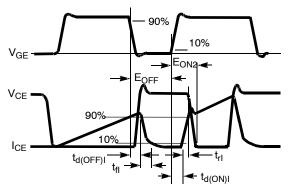
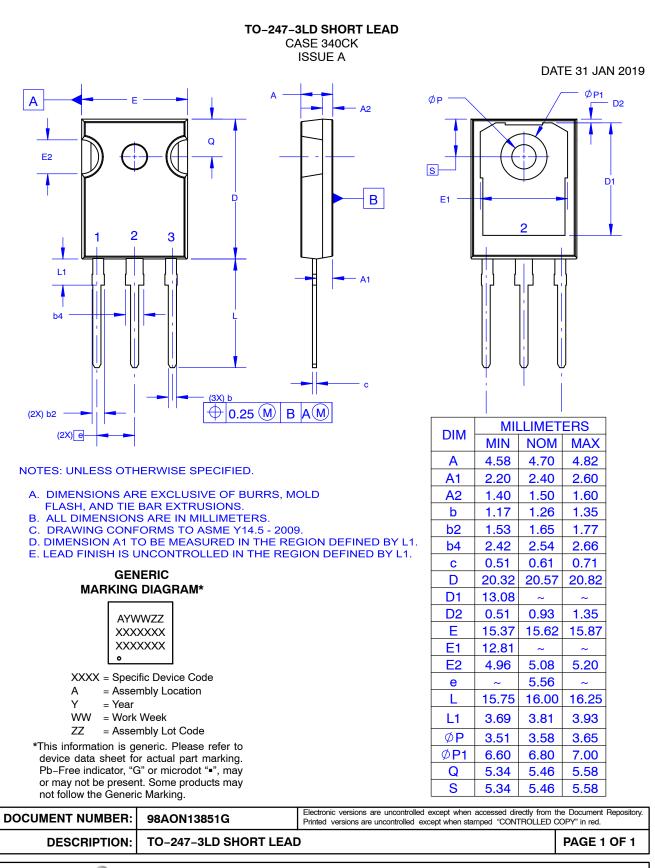



Figure 21. Switching Test Waveforms

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1