Field Stop Trench IGBT 650 V, 40 A

FGHL40T65MQDT

Field stop 4th generation mid speed IGBT technology copacked with full rated current diode.

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.45 \text{ V (Typ.)}$ @ $I_C = 40 \text{ A}$
- 100% of the Parts are Tested for I_{LM} (Note 2)
- Smooth and Optimized Switching
- Tight Parameter Distribution
- RoHS Compliant

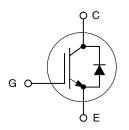
Typical Applications

- Solar Inverter
- UPS, ESS
- PFC, Converters

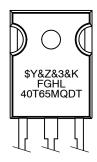
MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector to Emitter Voltage		650	V
Gate to Emitter Voltage Transient Gate to Emitter Voltage		±20 ±30	V
Collector Current (Note 1) @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	I _C	60 40	Α
Pulsed Collector Current (Note 2)	I _{LM}	160	Α
Pulsed Collector Current (Note 3)	I _{CM}	160	Α
Diode Forward Current (Note 1) @ T_{C} = 25°C @ T_{C} = 100°C	IF	60 40	Α
Pulsed Diode Maximum Forward Current	I _{FM}	160	Α
Maximum Power Dissipation @ T _C = 25°C @ T _C = 100°C	P _D	238 119	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +175	°C
Maximum Lead Temp. for Soldering Purposes (1/8" from case for 5 s)	T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Value limit by bond wire
- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 160 A, Inductive Load, 100% tested
- 3. Repetitive rating: pulse width limited by max. junction temperature

ON Semiconductor®


www.onsemi.com

40 A, 650 V V_{CESat} = 1.45 V

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code FGHL40T65MQDT = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGHL40T65MQDT	TO-247-3L	30 Units / Tube

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance Junction-to-case, for IGBT	$R_{ heta JC}$	0.63	°C/W
Thermal Resistance Junction-to-case, for Diode	$R_{ heta JC}$	0.91	°C/W
Thermal Resistance Junction-to-ambient	$R_{ heta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•		
Collector to Emitter Breakdown Voltage	$V_{GE} = 0 V$, $I_C = 1 mA$	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector to Emitter Cut-off Current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	-	250	μА
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS						_
Gate to Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	V _{GE(th)}	3.0	4.5	6.0	V
Collector to Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 25°C V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CE(sat)}	- -	1.45 1.65	1.8 -	V
DYNAMIC CHARACTERISTICS		•	-	-		
Input Capacitance	V _{CE} = 30 V,	C _{ies}	_	2680	_	pF
Output Capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	_	80	_	
Reverse Transfer Capacitance	1 1	C _{res}	_	9	_	
Gate Charge Total	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	Q_g	_	80	_	nC
Gate to Emitter Charge		Q_ge	-	16	-	1
Gate to Collector Charge		Q_{gc}	_	19	_	1
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-on Delay Time	T _J = 25°C,	t _{d(on)}	_	16	_	ns
Rise Time	$V_{CC} = 400 \text{ V},$ $I_{C} = 20 \text{ A},$	t _r	_	10	_	
Turn-off Delay Time	$R_G = 6 \Omega$, $V_{GE} = 15 V$	t _{d(off)}	_	82	_	
Fall Time	- GL 12 1	t _f	_	51	_	1
Turn-on Switching Loss		E _{on}	_	0.35	_	mJ
Turn-off Switching Loss		E _{off}	_	0.25	_	1
Total Switching Loss		E _{ts}	_	0.60	-	
Turn-on Delay Time	$T_J = 25^{\circ}C$, $V_{CC} = 400 \text{ V}$, $I_C = 40 \text{ A}$,	t _{d(on)}	_	18	_	ns
Rise Time		t _r	_	22	_	1
Turn-off Delay Time	$R_G = 6 \Omega$, $V_{GE} = 15 V$	t _{d(off)}	-	75	-	1
Fall Time	• GE - 10 V	t _f	_	38	_	1
Turn-on Switching Loss		E _{on}	-	0.88	-	mJ
Turn-off Switching Loss		E _{off}	-	0.49	-	1
Total Switching Loss	1	E _{ts}	_	1.36	_	1

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, IND	UCTIVE LOAD	•		•		•
Turn-on delay time	T _J = 175°C,	t _{d(on)}	-	16	_	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_{C} = 20 \text{ A},$	t _r	-	11	_	
Turn-off delay time	$R_G = 6 \Omega$, $V_{GE} = 15 V$	t _{d(off)}	-	93	_	
Fall time	- GE	t _f	-	88	-	
Turn-on switching loss		E _{on}	-	0.64	-	mJ
Turn-off switching loss		E _{off}	-	0.49	_	
Total switching loss		E _{ts}	-	1.13	-	
Turn-on delay time	T _J = 175°C,	t _{d(on)}	-	16	-	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_{C} = 40 \text{ A},$	t _r	-	26	-	
Turn-off delay time	$R_G = 6 \Omega$, $V_{GE} = 15 V$	t _{d(off)}	-	85	-	
Fall time		t _f	-	75	-	
Turn-on switching loss		E _{on}	-	1.31	-	mJ
Turn-off switching loss		E _{off}	_	0.90	_	•
Total switching loss		E _{ts}	-	2.21	-	
DIODE CHARACTERISTICS	•	-			•	
Diode Forward Voltage	I _F = 40 A, T _J = 25°C	V _F	-	1.7	2.15	V
	I _F = 40 A, T _J = 175°C		-	1.65	-	
DIODE SWITCHING CHARACTERISTIC	CS, INDUCTIVE LOAD	-			•	
Reverse Recovery Energy	$T_J = 25^{\circ}C$, $V_{CE} = 400 \text{ V}$, $I_F = 20 \text{ A}$,	E _{rec}	-	54	_	μЈ
Diode Reverse Recovery Time	di _F /dt = 1000 A/μs	T _{rr}	-	42	_	ns
Diode Reverse Recovery Charge		Q _{rr}	-	329	-	nC
Diode Reverse Recovery Current		I _{rr}	-	15	-	Α
Reverse Recovery Energy	T _J = 25°C, V _{CE} = 400 V, I _F = 40 A,	E _{rec}	-	121	-	μJ
Diode Reverse Recovery Time	di _F /dt = 1000 A/μs	T _{rr}	-	86	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	665	-	nC
Diode Reverse Recovery Current		I _{rr}	-	15	-	Α
Reverse Recovery Energy	$T_J = 175^{\circ}C$, $V_{CE} = 400 \text{ V}$, $I_F = 20 \text{ A}$,	E _{rec}	-	360	-	μJ
Diode Reverse Recovery Time	di _F /dt = 1000 A/μs	T _{rr}	-	104	-	ns
Diode Reverse Recovery Charge	1	Q _{rr}	-	1379	-	nC
Diode Reverse Recovery Current		I _{rr}	-	27	-	Α
Reverse Recovery Energy	T _J = 175°C, V _{CE} = 400 V, I _F = 40 A,	E _{rec}	-	519	-	μJ
Diode Reverse Recovery Time	- di _F /dt = 1000 A/μs	T _{rr}	-	141	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	1877	_	nC
Diode Reverse Recovery Current	\neg	I _{rr}	_	26	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

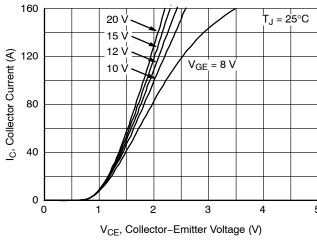


Figure 1. Typical Output Characteristics (T_J = 25°C)

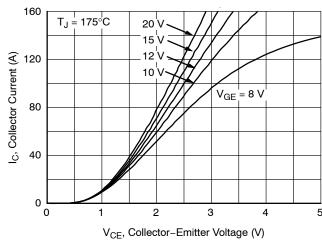


Figure 2. Typical Output Characteristics ($T_J = 175^{\circ}C$)

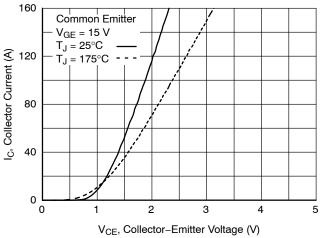


Figure 3. Typical Saturation Voltage Characteristics

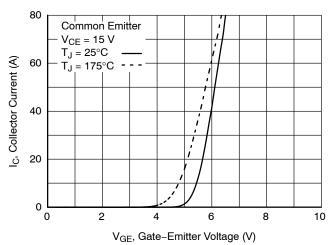


Figure 4. Typical Transfer Characteristics

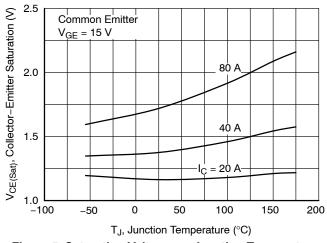


Figure 5. Saturation Voltage vs. Junction Temperature

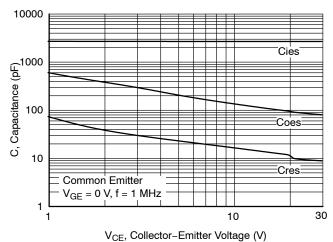


Figure 6. Capacitance Characteristics

TYPICAL CHARACTERISTICS (continued)

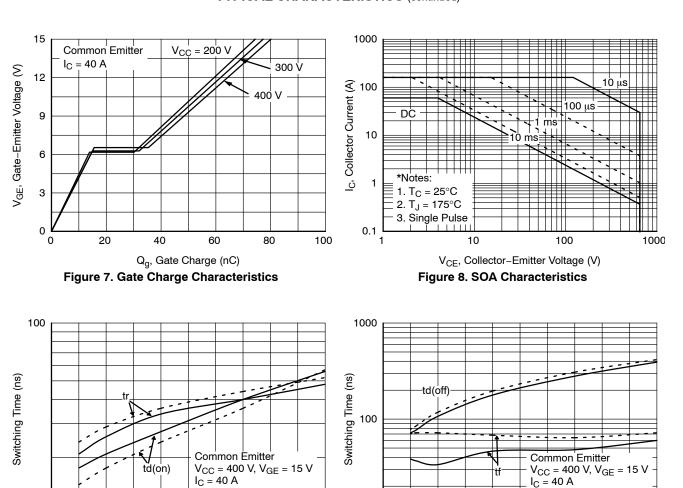


Figure 9. Turn-on Characteristics vs. Gate Resistance

 R_q , Gate Resistance (Ω)

20

10

10

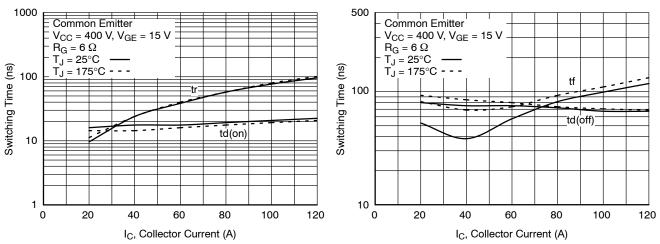
 $T_J = 25^{\circ}C$

30

 $T_{J}^{-} = 175^{\circ}C$ - - -

40

Figure 10. Turn-off Characteristics vs. Gate Resistance


 R_q , Gate Resistance (Ω)

20

 $\tilde{T_J} = 25^{\circ}C$

 $T_{J}^{-} = 175^{\circ}C^{-} - -$

50

10

50

10

Figure 11. Turn-on Characteristics vs. Collector Current Figure 12. Turn-off Characteristics vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

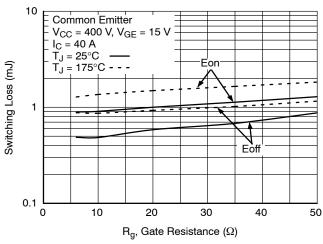


Figure 13. Switching Loss vs. Gate Resistance

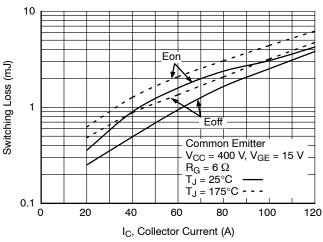


Figure 14. Switching Loss vs. Collector Current

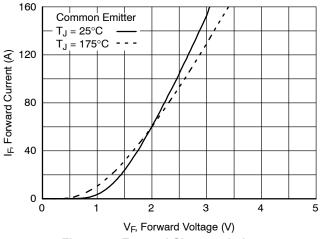


Figure 15. Forward Characteristics

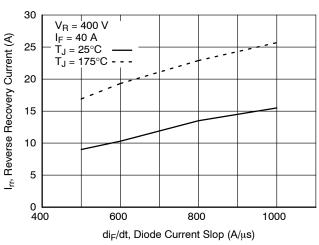


Figure 16. Reverse Recovery Current

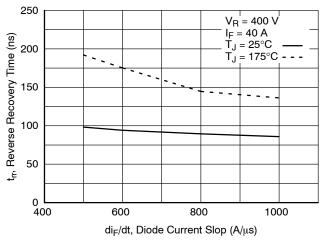


Figure 17. Reverse Recovery Time

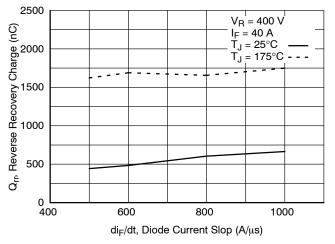


Figure 18. Stored Charge

TYPICAL CHARACTERISTICS (continued)

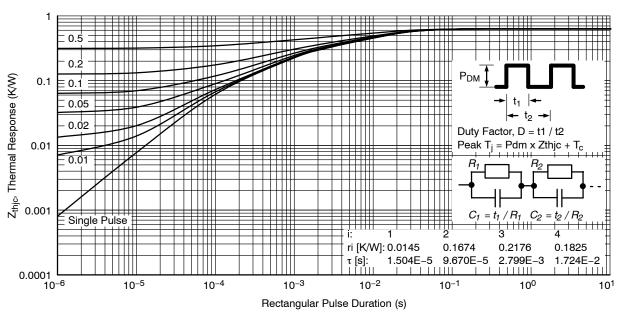


Figure 19. Transient Thermal Impedance of IGBT

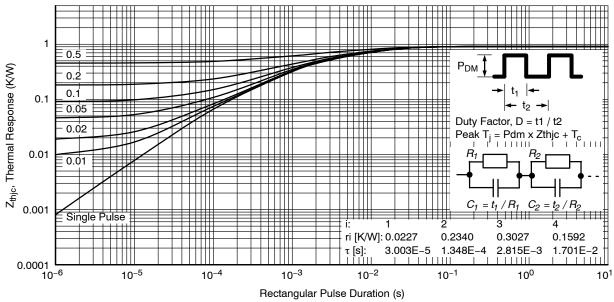
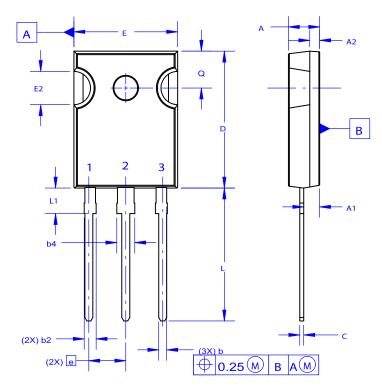
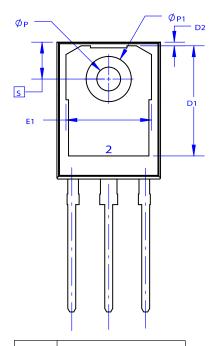



Figure 20. Transient Thermal Impedance of Diode

PACKAGE DIMENSIONS

TO-247-3LD CASE 340CX **ISSUE A**



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.

- C. DRAWING CONFORMS TO ASME Y14.5 2009.
 D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A 1	2.20	2.40	2.60	
A2	1.40	1.50	1.60	
D	20.32	20.57	20.82	
Е	15.37	15.62	15.87	
E2	4.96	5.08	5.20	
е	?	5.56	~	
L	19.75	20.00	20.25	
L1	3.69	3.81	3.93	
ØΡ	3.51	3.58	3.65	
Q	5.34	5.46	5.58	
S	5.34	5.46	5.58	
b	1.17	1.26	1.35	
b2	1.53	1.65	1.77	
b4	2.42	2.54	2.66	
С	0.51	0.61	0.71	
D1	13.08	~	~	
D2	0.51	0.93	1.35	
E1	12.81	~	~	
Ø P1	6.60	6.80	7.00	

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.nsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRG4PC30W APT20GT60BRDQ1G STGWA25H120DF2 APT30GS60BRDQ2G TIG058E8-TL-H IDW40E65D2 STGB40V60F

STGWA25H120F2 NGTB75N65FL2WAG 2MBI150VA-060-50 NTE3320 FGD3040G2-F085 FGD3440G2-F085 STGW80H65DFB-4

AFGY160T65SPD-B4 IGW30N60TP IGW40N60TP IGW50N60TP IHW30N65R5 IKFW40N60DH3E IKP15N65H5 IKQ100N60T

IKQ120N60T IKW30N65WR5 IKW75N60H3 IKZ50N65NH5 IKZ75N65NH5 FGD3040G2-F085C FGH4L50T65SQD FGHL40T65MQDT

FGHL50T65MQD FGHL50T65MQDTL4 FGHL75T65LQDT FGHL75T65MQD FGHL75T65MQDT FGHL75T65MQDTL4

FGY75T120SWD EL3120S1(TA)(SAS)-V IHW15N120E1 IKQ75N120CS6 IKW50N65WR5 SL15T65FK KGF50N65KDF-U/H

IHFW40N65R5S IKW08N120CS7XKSA1 IKQ75N120CH3 IHW30N160R5 SGM100HF12A1TFD CRG50T60AK3SD CRG40T60AN3S