

IGBT - Power, Co-PAK N-Channel, Field Stop VII (FS7), Non-SCR, TO247-3L 1200 V, 1.7 V, 100 A FGY100T120SWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3-lead package, FGY100T120SWD offers the optimum performance with low switching and conduction losses for high-efficiency operations in various applications like Solar, UPS, and ESS.

Features

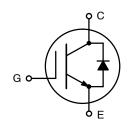
- Maximum Junction Temperature $T_I = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Smooth and Optimized Switching
- Low Switching Loss
- RoHS Compliant

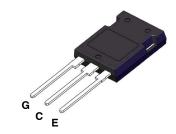
Applications

- Boost and Inverter in Solar System
- UPS
- Energy Storage System

MAXIMUM RATINGS (T, I = 25°C unless otherwise noted)

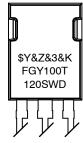
Parameter		Symbol	Value	Unit
Collector-to-Emitter Voltage		V _{CES}	1200	V
Gate-to-Emitter Voltage	Gate-to-Emitter Voltage		±20	V
Transient Gate-to-Emitter V	oltage		±30	V
Collector Current	T _C = 25°C (Note 1)	I _C	200	Α
	T _C = 100°C		100	
Power Dissipation	T _C = 25°C	P _D	866	W
	T _C = 100°C		433	
Pulsed Collector Current	$T_C = 25^{\circ}C$, $t_P = 10 \mu s$ (Note 2)	I _{CM}	400	Α
Diode Forward Current	T _C = 25°C	I _F	200	Α
	T _C = 100°C		100	
Pulsed Diode Maximum Forward Current	$T_C = 25^{\circ}C$, $t_P = 10 \mu s$ (Note 2)	I _{FM}	400	Α
Operating Junction and Storage Temperature Range		T _J , T _{STG}	–55 to +175	°C
Lead Temperature for Soldering Purposes		TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1

- 1. Value limit by bond wire
- 2. Repetitive rating: Pulse width limited by max. Junction temperature

BV _{CES}	V _{CE(SAT)}	I _C
1200 V	1.7 V	100 A


PIN CONNECTIONS

TO247-3LD CASE 340CD

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code

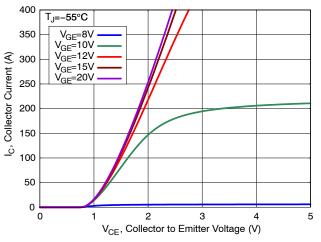
FGY100T120SWD = Specific Device code

ORDERING INFORMATION

Device	Package	Shipping
FGY100T120SWD	TO-247-3LD (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

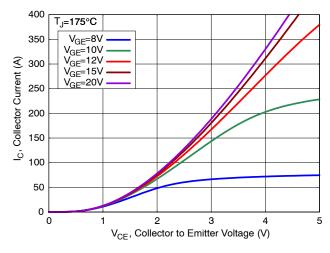
Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{\theta JC}$	0.17	°C/W
Thermal Resistance, Junction-to-Case for Diode		0.29	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	


ELECTRICAL CHARACTERISTICS OF IGBT (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1	•				
Collector-to-Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 5 \text{ mA}$	1200			V
Collector-to-Emitter Breakdown Voltage Temperature Coefficient	ΔBV _{CES} / ΔΤ _J			1.5		V/°C
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}			40	μΑ
Gate-to-Emitter Leakage Current	I _{GES}	V _{GE} = 20 V, V _{CE} = 0 V			±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(TH)}	V _{GE} = V _{CE} , I _C = 100 mA	5.6	6.55	7.4	V
Collector-to-Emitter Saturation Voltage	V _{CE(SAT)}	V _{GE} = 15 V, I _C = 100 A, T _J = 25°C	1.35	1.69	2.0	
		V _{GE} = 15 V, I _C = 100 A, T _J = 175°C		2.26		
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{IES}	V _{GE} = 0 V, V _{CE} = 30 V, f = 1 MHz		8489		pF
Output Capacitance	C _{OES}			320		
Reverse Transfer Capacitance	C _{RES}			41.4		
Total Gate Charge	Q_{G}	V _{CE} = 600 V, V _{GE} = 15 V, I _C = 100 A		284		nC
Gate-to-Emitter Charge	Q_{GE}			72.4		
Gate-to-Collector Charge	Q _{GC}			101		
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}, I_{C} = 50 \text{ A},$ $R_{G} = 4.7 \Omega, T_{J} = 25^{\circ}\text{C}$		46.4		ns
Turn-Off Delay Time	t _{d(off)}	$R_{G} = 4.7 \Omega, T_{J} = 25^{\circ}C$		209.6		
Rise Time	t _r			30.4		
Fall Time	t _f			58		
Turn-On Switching Loss	E _{on}			3.1		mJ
Turn-Off Switching Loss	E _{off}			1.6		
Total Switching Loss	E _{ts}			4.7		
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}, \\ I_{C} = 100 \text{ A}, R_{G} = 4.7 \Omega, T_{J} = 25^{\circ}\text{C}$		46.4		ns
Turn-Off Delay Time	t _{d(off)}	$I_C = 100 \text{ A}, R_G = 4.7 \Omega, T_J = 25^{\circ}\text{C}$		168		mJ
Rise Time	t _r			72		
Fall Time	t _f			51.2		
Turn-On Switching Loss	E _{on}			8.1		
Turn-Off Switching Loss	E _{off}			2.8		
Total Switching Loss	E _{ts}	1		10.9		

ELECTRICAL CHARACTERISTICS OF IGBT ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Turn-On Delay Time	t _{d(on)}	$V_{GE} = 0/15 \text{ V}, I_{C} = 50 \text{ A}, V_{CE} = 600 \text{ V},$ $R_{G} = 4.7 \Omega, T_{J} = 175^{\circ}\text{C}$		38.4		ns
Turn-Off Delay Time	t _{d(off)}			244.8		
Rise Time	t _r			28.8		
Fall Time	t _f			92.8		
Turn-On Switching Loss	E _{on}			4.9		mJ
Turn-Off Switching Loss	E _{off}			2.4		
Total Switching Loss	E _{ts}			7.3		
Turn-On Delay Time	t _{d(on)}	V _{GE} = 0/15 V, I _C = 100 A,		41.6		ns
Turn-Off Delay Time	t _{d(off)}	$V_{CE} = 600 \text{ V}, R_G = 4.7 \Omega, T_J = 175^{\circ}\text{C}$		196.8		
Rise Time	t _r			64		
Fall Time	t _f			76.8		1
Turn-On Switching Loss	E _{on}			11.3		mJ
Turn-Off Switching Loss	E _{off}			3.9		-
Total Switching Loss	E _{ts}			15.2		
DIODE CHARACTERISTICS				1		•
Forward Voltage	V _F	I _F = 100 A, T _J = 25°C	1.62	1.82	2.22	V
		I _F = 100 A, T _J = 175°C		1.87		1
DIODE SWITCHING CHARACTERIST	IC, INDUCTIVE L	OAD				
Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 50 \text{ A},$ $dI_F/dt = 1000 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$		152		ns
Reverse Recovery Charge	Q _{rr}			2977		nC
Reverse Recovery Energy	E _{rec}			0.9		mJ
Peak Reverse Recovery Current	I _{RRM}			39		Α
Reverse Recovery Time	t _{rr}	$V_{R} = 600 \text{ V}, I_{F} = 100 \text{ A},$ $dI_{F}/dt = 1000 \text{ A/}\mu\text{s}, T_{J} = 25^{\circ}\text{C}$		261		ns
Reverse Recovery Charge	Q _{rr}			5636		nC
Reverse Recovery Energy	E _{rec}			1.8		mJ
Peak Reverse Recovery Current	I _{RRM}			43		Α
Reverse Recovery Time	t _{rr}	V _R = 600 V, I _F = 50 A, dI _F /dt = 1000 A/μs, T _J = 175°C		192		ns
Reverse Recovery Charge	Q _{rr}			5275		nC
Reverse Recovery Energy	E _{rec}			1.6		mJ
Peak Reverse Recovery Current	I _{RRM}			55		Α
Reverse Recovery Time	t _{rr}	V _R = 600 V, I _F = 100 A,		358		ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 1000 A/μs, T _J = 175°C		10858		nC
Reverse Recovery Energy	E _{rec}			3.6		mJ
Peak Reverse Recovery Current	I _{RRM}			61		Α
		<u> </u>		+	.	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

400 T_J=25°C V_{GE}=8V V_{GE}=10V V_{GE}=12V 350 Collector Current (A) 300 V_{GE}=15V V_{GE}=20V 250 200 150 <u>ن</u> 100 50 0 5 V_{CE}, Collector to Emitter Voltage (V)

Figure 1. Output Characteristics

Figure 2. Output Characteristics

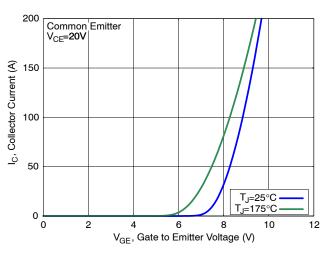
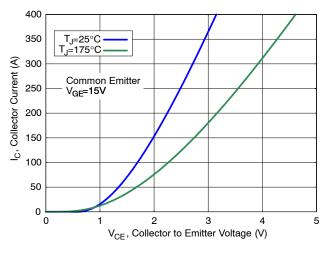



Figure 3. Output Characteristics

Figure 4. Transfer Characteristics

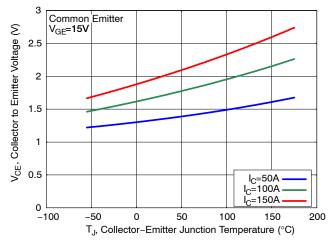


Figure 5. Saturation Characteristics

Figure 6. Saturation Voltage vs. Junction Temperature

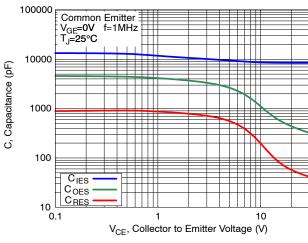


Figure 7. Capacitance Characteristics

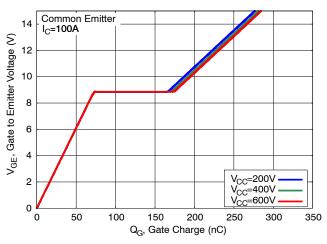


Figure 8. Gate Charge Characteristics

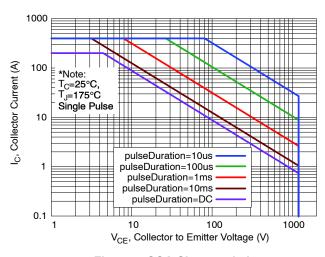


Figure 9. SOA Characteristics

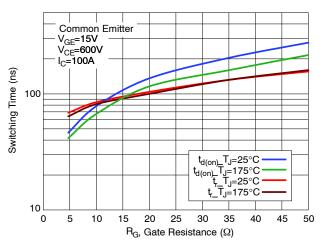


Figure 10. Turn-On Switching Time vs. Gate Resistance

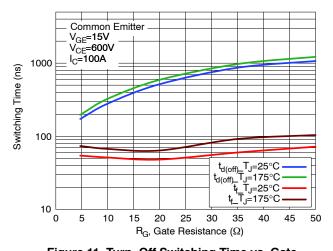


Figure 11. Turn-Off Switching Time vs. Gate Resistance

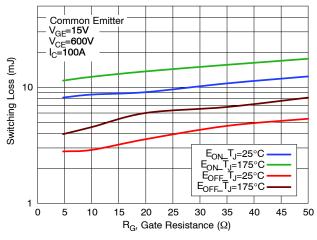


Figure 12. Switching Loss vs. Gate Resistance

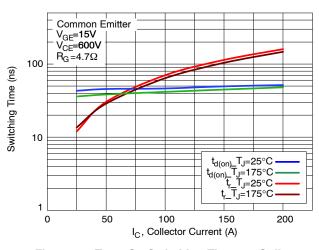
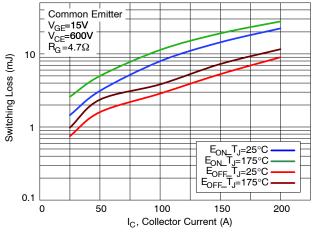



Figure 13. Turn-On Switching Time vs. Collector Current

Figure 14. Turn-Off Switching Time vs. Collector Current

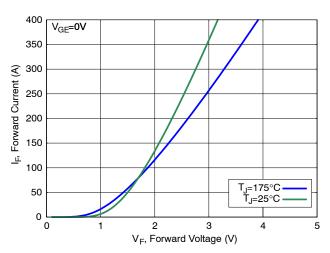
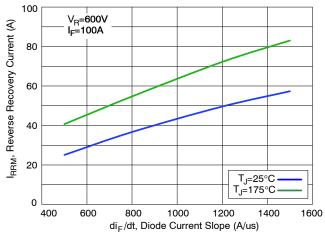



Figure 15. Switching Loss vs. Collector Current

Figure 16. Diode Forward Characteristics

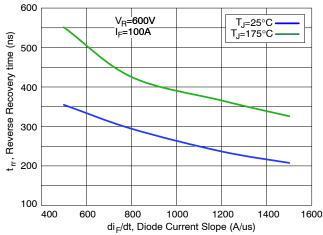


Figure 17. Diode Reverse Recovery Current

Figure 18. Diode Reverse Recovery Time

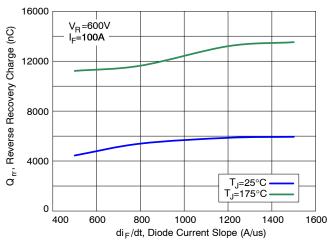


Figure 19. Diode Stored Charge Characteristics

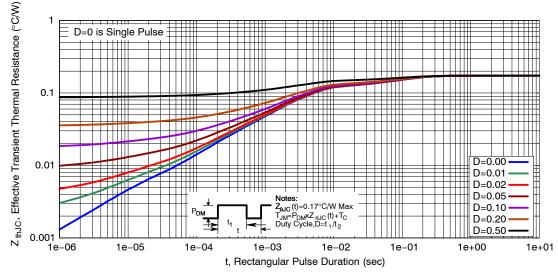
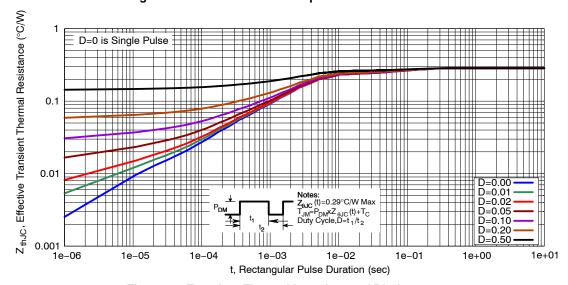
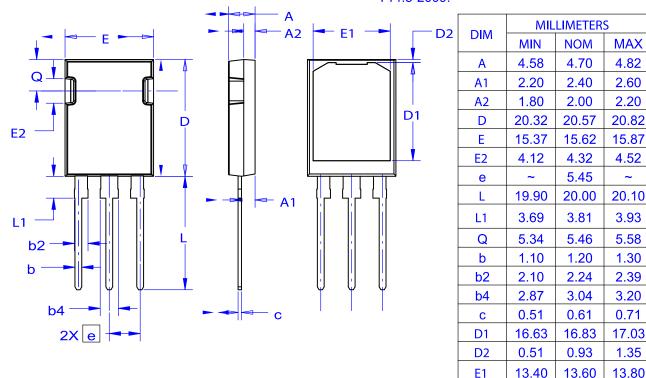


Figure 20. Transient Thermal Impedance of IGBT




Figure 21. Transient Thermal Impedance of Diode

PACKAGE DIMENSIONS

TO-247-3LD CASE 340CD **ISSUE A**

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

IRG4PC30W APT20GT60BRDQ1G STGWA25H120DF2 APT30GS60BRDQ2G TIG058E8-TL-H IDW40E65D2 STGB40V60F STGWA25H120F2 NGTB75N65FL2WAG NTE3320 FGD3040G2-F085 FGD3440G2-F085 STGW80H65DFB-4 AFGY160T65SPD-B4 IGW30N60TP IGW40N60TP IGW50N60TP IHW30N65R5 IKFW40N60DH3E IKP15N65H5 IKQ100N60T IKQ120N60T IKW30N65WR5 IKW75N60H3 IKZ50N65NH5 IKZ75N65NH5 FGD3040G2-F085C FGH4L50T65SQD FGHL40T65MQDT FGHL50T65MQD FGHL50T65MQDTL4 FGHL75T65LQDT FGHL75T65MQD FGHL75T65MQDT FGHL75T65MQDTL4 FGY75T120SWD EL3120S1(TA)(SAS)-V IHW15N120E1 IKQ75N120CS6 IKA08N65ET6 IKW50N65WR5 SL15T65FK KGF50N65KDF-U/H IKW08N120CS7XKSA1 IKQ75N120CH3 IHW30N160R5 SGM100HF12A1TFD CRG50T60AK3SD CRG40T60AN3S CRG75T65BK5SD