

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

September 2001 Revised December 2001

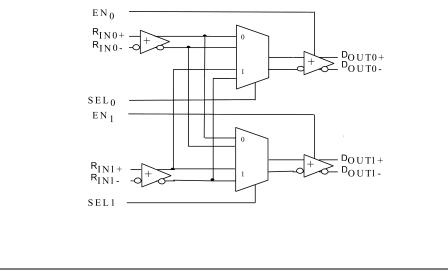
FIN1022 2 X 2 LVDS High Speed Crosspoint Switch

General Description

FAIRCHILD

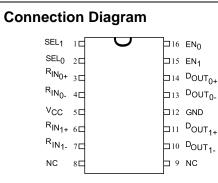
SEMICONDUCTOR

This non-blocking 2x2 crosspoint switch has a fully differential input to output data path for low noise generation and low pulse width distortion. The device can be used as a high speed crosspoint switch, 2:1 multiplexer, 1:2 demultiplexer or 1:2 signal splitter. The inputs can directly interface with LVDS and LVPECL levels.


Features

- Low jitter, 800 Mbps full differential data path
- Worst case jitter of 190ps with PRBS = $2^{23} - 1$ data pattern at 800 Mbps
- Rail-to-rail common mode range is 0.5V to 3.25V
- Worst case power dissipation is less than 126 mW
- Open-circuit fail safe protection
- Fast switch time of 1.1 ns typical
- 35 ps typical pin channel to channel skew
- 3.3V power supply operation
- Non-blocking switch
- LVDS receiver inputs accept LVPECL signals directly
- 7.5 kV HBM ESD protection
- 16-lead SOIC package and TSSOP package
- Inter-operates with TIA/EIA 644-1995 specification
- See the Fairchild Interface Solutions web page for cross reference information: www.fairchildsemi.com/products/interface/lvds.html

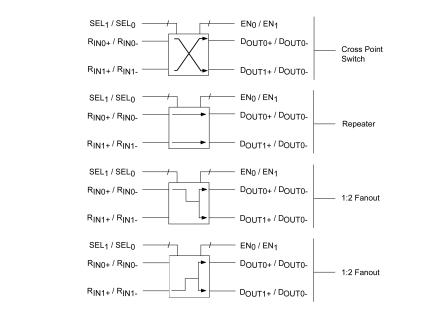
Ordering Code:


Order Number	Package Number	Package Description			
FIN1022M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
FIN1022MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

Logic Symbol

www.fairchildsemi.com

FIN1022


Pin Descriptions

Pin Name	Description
R _{IN0+} , R _{IN1+}	LVDS non-inverting data inputs
R _{IN0-} , R _{IN1-}	LVDS inverting data inputs
D _{OUT0+} , D _{OUT1+}	LVDS non-inverting data outputs
D _{OUT0-} , D _{OUT1-}	LVDS inverting data outputs
EN ₀	LVTTL input for enabling D _{OUT0+} /D _{OUT0-}
EN ₁	LVTTL input for enabling D _{OUT1+} /D _{OUT1-}
SEL ₀	LVTTL input for selecting R_{IN0+}/R_{IN0-} or R_{IN1+}/R_{IN1-} for output D_{OUT0+}/D_{OUT0-}
SEL1	LVTTL input for selecting R_{IN0+}/R_{IN0-} or R_{IN1+}/R_{IN1-} for output D_{OUT1+}/D_{OUT1-}
V _{CC}	Power Supply
GND	Ground

Function Table

	Inputs				Out	puts	Mode			
SEL ₀	SEL ₁	EN ₀	EN ₁	D _{OUT0+}	D _{OUT0-}	D _{OUT1+}	D _{OUT1-}	wode		
L/O	L/O	Н	Н	R _{IN0+}	R _{IN0-}	R _{IN0+}	R _{IN0-}	1:2 Splitter		
L/O	Н	Н	Н	R _{IN0+}	R _{IN0-}	R _{IN1+}	R _{IN1-}	Repeater		
Н	L/O	Н	Н	R _{IN1+}	R _{IN1-}	R _{IN0+}	R _{IN0-}	Switch		
Н	Н	Н	Н	R _{IN1+}	R _{IN1-}	R _{IN1+}	R _{IN1-}	1:2 Splitter		
Х	L/O	L/O	Н	Z	Z	R _{IN0+}	R _{IN0-}	D _{OUT0} Disabled		
Х	Н	L/O	Н	Z	Z	R _{IN1+}	R _{IN1-}	D _{OUT0} Disabled		
L/O	Х	Н	L/O	R _{IN0+}	R _{IN0-}	Z	Z	D _{OUT1} Disabled		
Н	Х	Н	L/O	R _{IN1+}	R _{IN1-}	Z	Z	D _{OUT1} Disabled		
Х	Х	L/O	L/O	Z	Z	Z	Z	D _{OUT0} and D _{OUT1} Disabled		
OPEN	L / O = LOV	V or OPEN	H = HI	GH Logic Lev	vel L=	LOW Logic	Level	X = Don't Care Z = High Imped		

Function Diagrams

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.3V to +4.6V
DC Input Voltage (V _{IN})	-0.3V to +4.6V
DC Output Voltage (V _{OUT})	-0.3V to +4.6V
Driver Short Circuit Current (I _{OSD})	Continuous
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0 to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Electrostatic Discharge	
(HBM 1.5 kΩ, 100 pF)	>7500V
Electrostatic Discharge	
(MM 0Ω, 100 pF)	>300V
Note 1: The "Absolute Maximum Patings": are the	se values beyond which

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified (Note 2)

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units	
LVDS Diffe	erential Driver Characteristics			1 1			
V _{OD}	Output Differential Voltage	$R_L = 75 \Omega$, See Figure 3	270	365	475		
		$R_L = 75 \Omega$, See Figure 3 $T_A = 25^{\circ}C$ and $V_{CC} = 3.3V$	285	365	440	mV	
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 75 \ \Omega$, See Figure 3			35	mV	
V _{OS}	Offset Voltage	See Figure 3	1.0	1.2	1.45	V	
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH	See Figure 3			35	mV	
I _{OZD}	Disabled Output Leakage Current	V _{OUT} = 3.6V or GND, Driver Disabled			±10	μA	
I _{OFF}	Power-Off Current	$V_{CC} = 0V$, V_{IN} or $V_{OUT} = 3.6V$ or $0V$			±20	μA	
I _{OS}	Short Circuit Output Current	V _{OUT} = 0V, Driver Enabled			-10	mA	
		V _{OUTx+} = 0V, V _{OUTx-} = 0V, Driver Enabled			-10		
LVDS Diffe	erential Receiver Characteristics						
V _{TH}	Differential Input Threshold HIGH	V _{IC} = 0.05V or 1.2V or 3.25V			100	mV	
V _{TL}	Differential Input Threshold LOW	$V_{CC} = 3.3V$	-100			mv	
VIC	Input Common Mode Voltage		0.05		3.25	V	
I _{IND}	Input Current (Differential Inputs)	V _{IN} = GND			±20	μA	
	1	V _{IN} = V _{CC}			±20	- μΑ	
LVTTL Cor	ntrol Characteristics						
VIH	Input High Voltage		2			V	
V _{IL}	Input Low Voltage				0.8	V	
I _{IN}	Input Current	V _{IN} = 3.6V or GND			±20	μΑ	
Device Cha	aracteristics						
V _{IK}	Input Clamp Voltage	$I_{IK} = -18 \text{ mA}$	-1.5			V	
I _{PU/PD}	Output Power-Up/Power-Down High Z Leakage Current	$V_{CC} = 0V$ to 1.5V			±10	μΑ	
C _{IN}	Input Capacitance			4.5		pF	
C _{OUT}	Output Capacitance			4.5		pF	
Icc	Power Supply Current	No Load, All Drivers Enabled			35	mA	
		$R_L = 75 \Omega$, All Drivers Enabled			35	mA	
		$R_L = 75 \Omega$, All Drivers Enabled			35	mA	

Note 2: This part will only function with datasheet specification when a resistive load is applied to the driver outputs.

Note 3: All typical values are at T_A = 25°C and with V_{CC} = 3.3V.

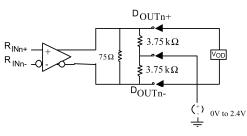
FIN1022

FIN1022

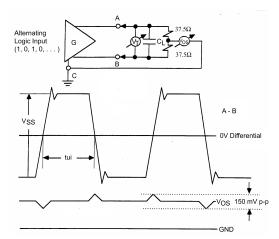
AC Electrical Characteristics Over supply voltage and operating temperature ranges, unless otherwise specified

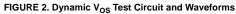
Symbol	Parameter	Test Conditions	Min	Typ (Note 4)	Max	Units		
t _{PLHD}	Differential Output Propagation Delay		0.7		1.6	ns		
	LOW-to-HIGH	$R_L = 75 \ \Omega, \ C_L = 5 \ pF,$	1.0	1.2	1.3	ns		
t _{PHLD}	Differential Output Propagation Delay	$V_{CC} = 3.3 V$, $T_A = 25^{\circ}C$	0.7		1.6	ns		
	HIGH-to-LOW	See Figure 4 and Figure 5	1.0	1.2	1.3	ns		
t _{TLHD}	Differential Output Rise Time (20% to 80%)		290		580	ps		
t _{THLD}	Differential Output Fall Time (80% to 20%)		290		580	ps		
t _{PLH}	Selection Propagation Delay		0.6		1.5			
	LOW-to-HIGH (SEL _n to OUT _n)	$R_L = 75 \Omega$, $C_L = 5 pF$,	0.9	1.1	1.2	ns		
t _{PHL}	Selection Propagation Delay	$V_{CC} = 3.3V, T_A = 25^{\circ}C$	0.6		1.5	ns		
	HIGH-to-LOW (SEL _n to OUT _n)	See Figure 6 and Figure 7	0.9	1.1	1.2	ns		
^t ZHD	Differential Output Enable Time				3.5			
	from Z-to-HIGH				3.5	ns		
t _{ZLD}	Differential Output Enable Time				3.5			
	from Z-to-LOW	$R_L = 75\Omega$, $C_L = 5 \text{ pF}$			3.5	ns		
t _{HZD}	Differential Output Disable Time	See Figure 8 and Figure 9			3.5			
	from HIGH-to-Z				3.5	ns		
t _{LZD}	Differential Output Disable Time				3.5			
	from LOW-to-Z				3.0	ns		
t _{SET}	Input (IN _{n+} /IN _{n-}) Setup Time to SEL _n	See Figure 10	0.5	0.3		ns		
t _{HOLD}	Input (IN _{n+} /IN _{n-}) Hold Time to SEL _n	See Figure 10	0.5	0.3		ns		
t _{JIT}	Output Peak-to-Peak Jitter	2 ²³ –1 PRBS Sequence at 800 Mbps			190	ps		
		50% Duty Cycle at 800 Mbps		20	35	ps		
f _{тос}	Maximum Toggle Frequency	$R_L = 75 \Omega$, $C_L = 5 pF$, See Figure 4	800	900		Mbps		
t _{SKEW}	Within Device Channel-to-Channel Skew			35	80	ps		
	Pulse Skew t _{PLHD} -t _{PHLD}			0	225	ps		
	Part-to-Part Skew (Note 5)			100	500	ps		

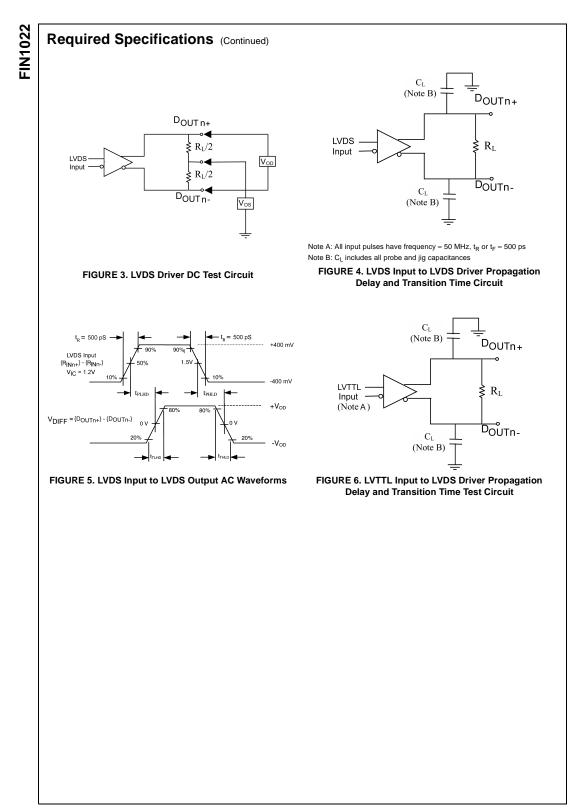
Note 4: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

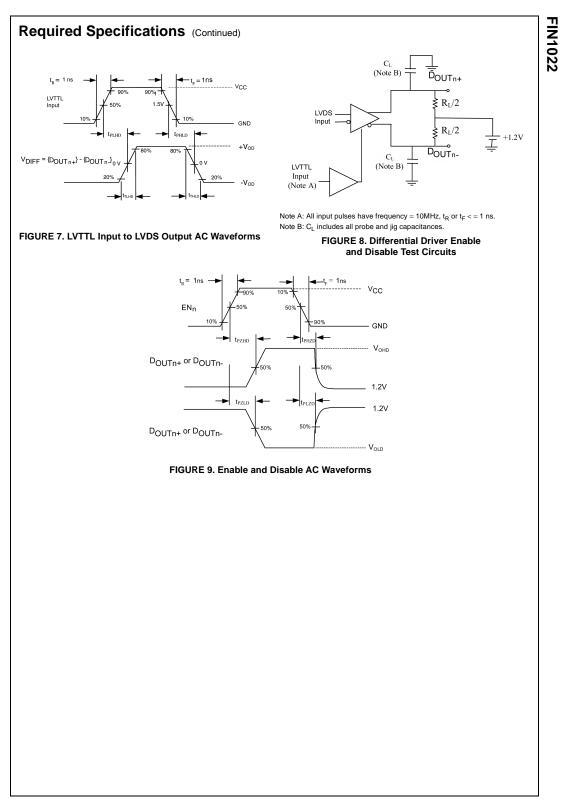

Note 5: Part-to-part skew is the maximum delay time difference on like edges (LOW-to-HIGH or HIGH-to-LOW) for the same V_{CC} and temperature conditions.

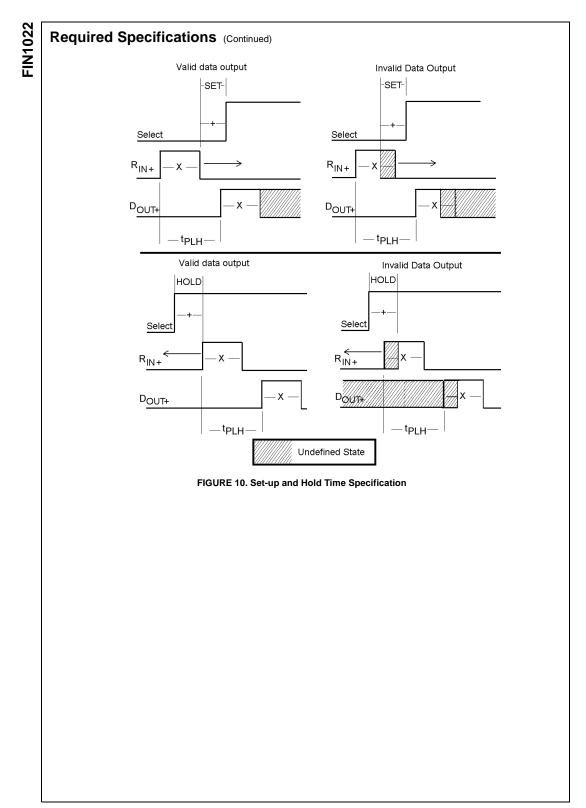
Required Specifications

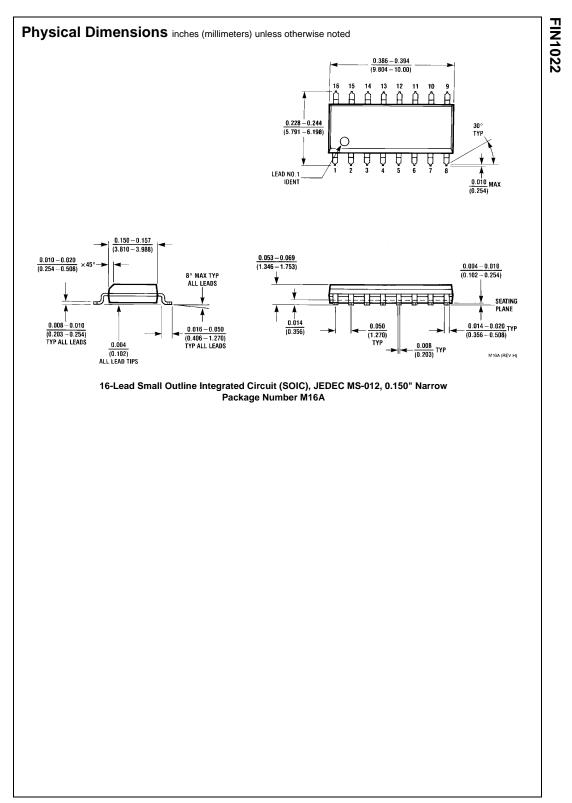

- 1. When the true and complement LVDS outputs (having a 75 Ω connected between outputs) are connected to 3.75 k Ω resistors and the common point of those 3.75 k Ω resistors are connected to a voltage source that sweeps from 0 to 2.4V, the DC V_{OD} and Δ V_{OD} are still maintained (see Figure 1).
- 2. When the true and complement LVDS outputs (having a 5 pF capacitor attached between outputs) are connected with 37.5Ω resistors each to common point, then the common point does not vary by more than 150 mV under all process, temperature and voltage conditions when the outputs switch either from LOW-to-HIGH or from HIGH-to-LOW (see Figure 2).
- 3. Pull-down resistors are required on Enable (EN₀ and EN₁) and select (SEL₀ and SEL₁) inputs.

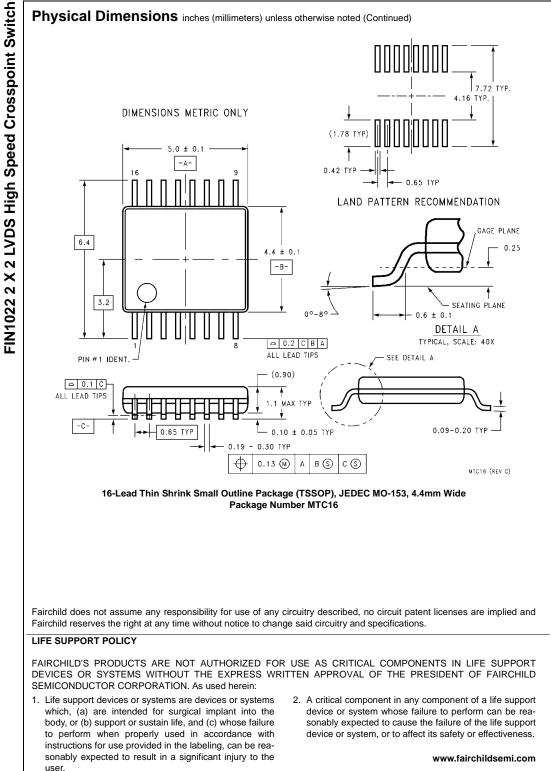

FIN1022


- 4. Fail safe protection on the outputs that draw less than 20 μ A of current (worst case) on the LVDS inputs. In this condition, if the input is in fail safe selected to OUT₀₊/OUT₀₋ (say) and the outputs are Enabled then OUT₀₊ = HIGH and OUT₀₋ = LOW. This prevents noise from being amplified when the connection is broken.
- 5. In the disabled state the outputs can go beyond V_{CC} but there should be no appreciable leakage (see I_{OZD} and I_{OFF} specifications)









www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue & Digital Crosspoint ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MT093AE1 MT8808AE1 ADV3203ASWZ AD8177ABPZ ISPGDX240VA-4B388 VSC3308YKU LX64EV-3F100C ISPGDX240VA-4BN388 LX256EV-5FN484C GX4002-INE3 AD8112JSTZ AD8115ASTZ SN65LVCP22D ADV3205JSTZ SY89540UMY AD75019JPZ AD75019JPZ-REEL AD8106ASTZ AD8107ASTZ AD8108ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8152JBPZ AD8153ACPZ AD8155ACPZ AD8158ACPZ AD8159ASVZ ADN4604ASVZ AD8153ACPZ-RL7 ADN4600ACPZ ADV3201ASWZ ADV3226ACPZ ADV3227ACPZ ADV3228ACPZ ADV3229ACPZ HMC858LC4B HMC857LC5 MAX4550CAI+ EL4544IGZ HA4314BCPZ MAX9152EUE+T MAX9152ESE+ MAX4359EWG+ MAX3840ETJ+ MAX4360EAX+ MAX4360EAX+T MAX4549EAX+ MAX4570CWI+ MAX4549EAX+T