

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FIN1027 I FIN1027A－3．3V LVDS，2－Bit，High－Speed， Differential Driver

Features

－Greater than 600 Mbs Data Rate
－3V Power Supply Operation
－5ns Maximum Differential Pulse Skew
－ $1.5 n s$ Maximum Propagation Delay
－Low Power Dissipation
－Power－Off Protection
－Meets or Exceeds the TIA／EIA－644 LVDS Standard
－Flow－through Pinout Simplifies PCB Layout

Description

This dual driver is designed for high－speed interconnects utilizing Low Voltage Differential Signaling （LVDS）technology．The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350 mV ，which provides low EMI at ultra－low power dissipation，even at high frequencies．This device is ideal for high－speed transfer of clock or data．

The FIN1027 or FIN1027A can be paired with its companion receiver，the FIN1028，or with any other LVDS receiver．

Pin Configuration

Figure 1. FIN1027 SOIC Pin Assignment (Top View)
Figure 2. FIN1027A SOIC Pin Assignment (Top View)

Figure 3. FIN1027 US8 Pin Assignment (Top View)

Pin Definitions

Name	Pin \# FIN1027 SOIC	Pin \# FIN1027A SOIC	Pin \# FIN1027 US8	Description
$V_{\text {CC }}$	1	1	8	Power Supply
$D_{\text {IN1 }}$	2	2	7	LVTTL Data Input
$D_{\text {IN2 }}$	3	3	6	LVTTL Data Input
GND	4	4	5	Ground
Dout2-	5	5	4	Inverting Driver Output
Dout2+	6	6	3	Non-Inverting Driver Output
Dout1+	7	8	2	Non-Inverting Driver Output
Dout1-	8	7	1	Inverting Driver Output

Function Table

Input	Outputs	
DIN	Dout+	Dout-
LOW	LOW	HIGH
HIGH	HIGH	LOW
OPEN	LOW	HIGH

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	4.6	V
$\mathrm{D}_{\text {IN }}$	DC Input Voltage	-0.5	6.0	V
$\mathrm{D}_{\text {out }}$	DC Output Voltage	-0.5	4.7	V
$\mathrm{I}_{\text {OSD }}$	Driver Short-Circuit Current	Continuous		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature		+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, Soldering, 10 Seconds		+260	${ }^{\circ} \mathrm{C}$
	Human Body Model, JESD22-A114		≥ 6500	V
	Machine Model, JESD22-A115		≥ 400	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	3.0	3.6	V
$\mathrm{~V}_{\mathbb{I}}$	Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. Over-supply voltage and operating temperature ranges, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Vod	Output Differential Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 4	250	350	450	mV
$\Delta \mathrm{V}_{\text {OD }}$	Vod Magnitude Change from Differential LOW-to-HIGH				25	mV
Vos	Offset Voltage		1.125	1.250	1.375	V
$\Delta \mathrm{V}_{\text {os }}$	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
loff	Power-Off Output current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ or 3.6 V			± 20	$\mu \mathrm{A}$
los	Short-Circuit Output Current	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$			-8	mA
		$\mathrm{V}_{\text {OD }}=0 \mathrm{~V}$			± 8	
V_{IH}	Input HIGH Voltage		2.0		V cc	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		GND		0.8	V
IN	Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$			± 20	$\mu \mathrm{A}$
$\mathrm{l}_{\text {(OFF) }}$	Power-Off Input Current	$\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 3.6 V			± 20	$\mu \mathrm{A}$
V_{IK}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$	-1.5			V
Icc	Power Supply Current	No Load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{Cc}			12.5	mA
		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC}			17.0	mA
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4		pF
Cout	Output Capacitance			6		pF

AC Electrical Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. Over-supply voltage and operating temperature ranges, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$t_{\text {PLHD }}$	Differential Propagation Delay, LOW-to-HIGH	$\begin{aligned} & R_{\mathrm{L}}=100 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \end{aligned}$ Figure 5, Figure 6	0.5		1.5	ns
$t_{\text {PHLD }}$	Differential Propagation Delay, HIGH-to-LOW		0.5		1.5	ns
${ }_{\text {t }}^{\text {L }}$ [HD	Differential Output Rise Time (20\% to 80\%)		0.4		1.0	ns
${ }_{\text {t }}^{\text {HLL }}$ (Differential Output Fall Time (80\% to 20\%)		0.4		1.0	ns
$\mathrm{tsk}_{\text {(}}$)	Pulse Skew \mid tpLH ${ }_{\text {tPHL }} \mid$				0.5	ns
$\mathrm{t}_{\text {SK(LH), }} \mathrm{t}_{\text {SK(HL) }}$	Channel-to-Channel Skew ${ }^{(1)}$				0.3	ns
tsk(PP)	Part-to-Part Skew ${ }^{(2)}$				1.0	ns

Notes:

1. $\mathrm{t}_{\mathrm{SK}(\mathrm{LH})}, \mathrm{t}_{\mathrm{SK}(\mathrm{HL})}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.
2. $\mathrm{t}_{\mathrm{SK}(\mathrm{PP})}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Test Diagrams

Figure 4. Differential Driver DC Test Circuit

Note A: All input pulses have frequency $=10 \mathrm{MHz}$, t_{R} or $t_{F}=2 n s$.
Note B : C_{L} includes all probe and fixture capacitances.

Figure 5. Differential Driver Propagation Delay and Transition Time Test Circuit

Figure 6. AC Waveforms

Typical Performance Characteristics

Figure 7. Output High Voltage vs. Power Supply Voltage

Figure 9. Output Short Circuit Current vs. Power Supply Voltage

Figure 11. Differential Output Voltage vs. Load Resistor

Figure 8. Output Low Voltage
vs. Power Supply Voltage

Figure 10. Differential Output Voltage vs. Power Supply Voltage

Figure 12. Offset Voltage vs. Power Supply Voltage

Typical Performance Characteristics (Continued)

Figure 13. Power Supply Current vs. Frequency

Figure 15. Power Supply Current vs. Ambient Temperature

Figure 17. Differential Propagation Delay vs. Ambient Temperature

Figure 14. Power Supply Current vs. Power Supply Voltage

Figure 16. Differential Propagation Delay vs. Power Supply

Figure 18. Differential Skew ($\mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\text {PHL }}$) vs. Power Supply

Typical Performance Characteristics (Continued)

Figure 19. Differential Pulse Skew (tpLh- $\mathrm{t}_{\text {PHL }}$)

Figure 20. Transition Time vs. Power Supply Voltage

Figure 21. Transition Time vs. Ambient Temperature

Physical Dimensions

LAND PATTERN RECOMMENDATION

Figure 22. 8-Lead, Small Outline Package (SOIC), JEDEC MS-012, 0.150-inch, Narrow Body

Click here for tape and reel specifications, available at: http://www.fairchildsemi.com/products/discrete/pdf/soic8_tr.pdf

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packagingl.

Physical Dimensions

MAB08AREVC

Figure 23. 8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following indudes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM ${ }^{\text {™ }}$	F-PFS ${ }^{\text {m }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {e }}$
Build it Now ${ }^{\text {mm }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	
CorePLUS'm	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Drooptm	
CorePONER ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	Tiny Boostm
CROSSVOLJ ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}$-Series ${ }^{\text {m }}$	QS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {Tm }}$
CTL ${ }^{\text {TM }}$	Gmax ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {a }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	RapidConfigure ${ }^{\text {TM }}$	TINYOPTOTM
Ecospark ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {TM }}$	()	TinyPowertm
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	$\mathrm{TM}^{\text {T }}$	TinyPWM ${ }^{\text {™ }}$
EZSWTCH ${ }^{\text {TMA }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{KW}$ at a time ${ }^{\text {TM }}$	TinyMre ${ }^{\text {™ }}$
E7	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {tM }}$
E-	MicroFETTM	SMART STARTTM	TRUECURRENTM*
$5^{(8)}$	MicroPak ${ }^{\text {m }}$	$\mathrm{SPM}^{\text {® }}$	μ SerDes ${ }^{\text {tm }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	Wh
Fairchild ${ }^{\circ}$ *airchild Semiconductor ${ }^{\circ}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {m/M }}$	${ }_{\text {SerDes }}$
Fairchild Semiconductor FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	Supersotime	UHC ${ }^{\text {a }}$
FACT ${ }^{\text {F }}$ -	OPTOLOGIC ${ }^{\circ}$	SuperSOTTM.6	Ultra FRFETTM
FAST ${ }^{\text {® }}$	OPTOPLANAR	SuperSOTTM-8	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SupremOS ${ }^{\text {S }}$	$V C X^{\text {тm }}$
FETBench ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {®** }}$	Power-SPM ${ }^{\text {m }}$	[SYSTEM ©	XS ${ }^{\text {TM }}$
FPSTM		SGENERAL	

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES MTHOUT FURTHERNOTCE TO ANY PRODUCTSHEREIN TOIMPROVE REUABILTY FUNCTION, ORDESIGN. FAIRCHIDDOESNOTASSUME ANY LIABIUTY ARISING OUT OF THE APPLICATION ORUSE OF ANY PRODUCT OR CIRCUIT DESCRBED HEREIN; NEITHER DOESIT CONVEY ANY UCENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'SWORLDMDE TERMS AND CONDITIONS, SPECFICALY THE WARRANTY THEREIN, MHICH COVERS THESEPRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeting of semicondudor parts is a growing problem in the industry. All manufacturers of semiconductor products are experienaing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directy or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is ommmited to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LVDS Interface IC category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FIN224ACMLX 8T49N2083NLGI\# MAX9135GHJ+ MS1224 SN65LVP16DRFT SN65MLVD200D MAX9176EUB+ DS90LV047ATMX/NOPB DS90LV018ATM DS90LT012AHMF DS90LV049TMT DS90LV047ATM DS90LV032ATMTC DS90C383MTDX/NOPB DS90C383MTD DS90LV031ATMTC DS90C402M SN65LVDS051PWRQ1 DS90C387VJDXNOPB SN65LVDT32BDR ADN4665ARUZ ADN4666ARUZ ADN4666ARZ-REEL7 ADN4692EBRZ ADN4693EBRZ ADN4697EBRZ ADN4695EBRZ ADN4665ARZ ADN4666ARZ ADN4667ARZ ADN4667ARZ-REEL7 ADN4668ARZ ADN4670BSTZ ADN4670BCPZ ADN4661BRZ ADN4663BRZ-REEL7 ADN4694EBRZ-RL7 ADN4662BRZ-REEL7 ADN4662BRZ ADN4691EBRZ ADN4694EBRZ ADN4690EBRZ ADN4661BRZ-REEL7 MAX9113ESA+ GM8285BGA MAX9113ESA+T MAX9111ESA+T MAX9112ESA+T MAX9122EUE+T MAX9174EUB+T

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

