

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

September 2009

FIN1215 / FIN1216 / FIN1217/ FIN1218 LVDS 21-Bit Serializers / De-Serializers

Features

- Low Power Consumption
- 20MHz to 85MHz Shift Clock Support
- 50% Duty Cycle on the Clock Output of Receiver
- ±1V Common-mode Range ~1.2V
- Narrow Bus Reduces Cable Size and Cost
- High Throughput: 1.785Gbps
- Up to 595Mbps per Channel
- Internal PLL with No External Components
- Compatible with TIA/EIA-644 Specification
- Offered in 48-lead TSSOP Packages

Description

The FIN1217 and FIN1215 transform 21-bit wide parallel LVTTL (Low-Voltage TTL) data into three serial LVDS (Low-Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link. Every cycle of transmit clock, 21 bits of input LVTTL data are sampled and transmitted.

The FIN1216 and FIN1218 receives and converts the three serial LVDS data streams back into 21 bits of LVTTL data. Table 1 provides a matrix summary of the serializers and de-serializers available. For the FIN1217, at a transmit clock frequency of 85MHz, 21 bits of LVTTL data are transmitted at a rate of 595Mbps per LVDS channel.

These chipsets solve EMI and cable size problems associated with wide and high-speed TTL interfaces.

Ordering Information

Part Number	Operating Temperature Range	© Eco Status	Package	Packing Method
FIN1215MTDX				
FIN1216MTDX				7
FIN1217MTDX	-40 to + 85°C	RoHS	48-Lead Thin Shrink Small Outline Package (TSSOP)	Tape and Reel
FIN1218MTDX (Preliminary)				

Block Diagrams

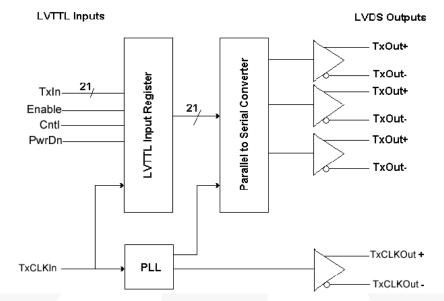


Figure 1. FIN1217 / FIN1215 Transmitter Functional Diagram

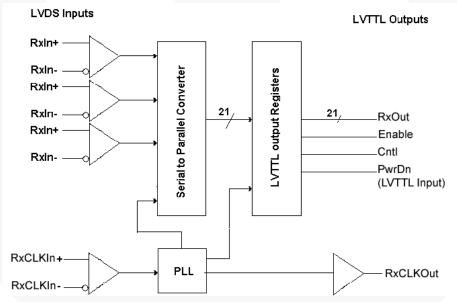


Figure 2. FIN1218 / FIN1216 Receiver Functional Diagram

Table 1. Serializers / De-Serializers Chip Matrix

Part	CLK Frequency	LVTTL IN	LVDS OUT	LVDS IN	LVTTL OUT	Package
FIN1215	66	21	3			48-Lead TSSOP
FIN1216	66			3	21	48-Lead TSSOP
FIN1217	85	21	3			48-Lead TSSOP
FIN1218	85			3	21	48-Lead TSSOP

Transmitters

Pin Configuration

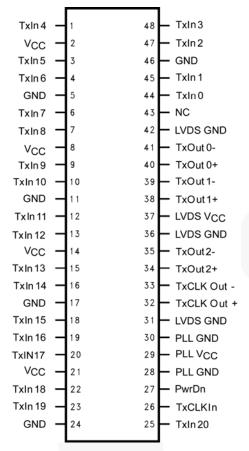


Figure 3. FIN1217 / FIN1215 (21:3 Transmitter)

Pin Definitions

Pin Names	I/O Type	# of Pins	Description of Signals
TxIn	I	21	LVTTL Level Inputs
TxCKLIn	I	1	LVTTL Level Clock Input; the rising edge is for data strobe
TxOut+	0	3	Positive LVDS Differential Data Output
TxOut	0	3	Negative LVDS Differential Data Output
TxCLKOut+	0	1	Positive LVDS Differential Clock Output
TxCLKOut-	0	1	Negative LVDS Differential Clock Output
/PwrDn	I	1	LVTTL Level Power-Down Input; assertion (LOW) puts the outputs in high-impedance state
PLL V _{CC}	I	1	Power Supply Pin for LVDS Outputs
PLL GND	I	2	Ground Pins for PLL
LVDS V _{CC}	I	1	Power Supply Pins for LVDS Outputs
LVDS GND	I	3	Ground Pin for LVDS Outputs
V _{CC}	I	4	Power Supply Pins for LVTTL Inputs
GND	I	5	Ground Pins for LVTTL Inputs
NC			No Connect

Receivers

Pin Configuration

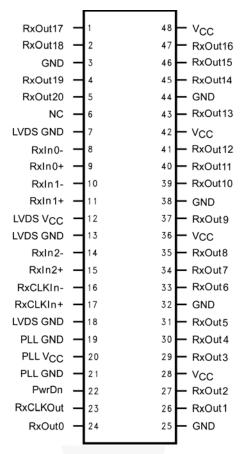


Figure 4. FIN1216 / FIN1218 (3:21 Receiver)

Pin Definitions

Pin Names	I/O Type	# of Pins	Description of Signals
RxIn	I	3	Negative LVDS Differential Data Output
RxIn+	I	3	Positive LVDS Differential Data Output
RxCLKIn-	I	1	Negative LVDS Differential Clock Output
RxCLKIn+	I	1	Positive LVDS Differential Clock Output
RxOut-	0	21	LVTTL Level Data Outputs Goes HIGH for /PwrDn LOW
RxCLKOut	0	1	LVTTL Level Clock Output
/PwrDn	I	1	LVTTL Level Input; Refer to Transmitter and Receiver Power-up and Power-down Operation Truth Table
PLL V _{CC}	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS V _{CC}	I	1	Power Supply Pins for LVDS Inputs
LVDS GND	I	3	Ground Pin for LVDS Inputs
Vcc	I	4	Power Supply Pins for LVTTL Outputs
GND	I	5	Ground Pins for LVTTL Outputs
NC			No Connect

Truth Tables

Transmitter

	Inputs	Outputs			
TxIn	TxCLKIn	PwrDn ⁽¹⁾	TxOut±	TxCLKOut±	
Active	Active	HIGH	LOW / HIGH	LOW / HIGH	
Active	LOW / HIGH High Impedance	HIGH	LOW / HIGH	Don't Care ⁽²⁾	
Floating	Active	HIGH	LOW	LOW / HIGH	
Floating	Floating	HIGH	LOW	Don't Care ⁽²⁾	
Don't Care	Don't Care	LOW	High Impedance	High Impedance	

Notes:

- 1. The outputs of the transmitter or receiver remain in a high-impedance state until Vcc reaches 2V.
- 2. TxCLKOut± settles at a free running frequency when the part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic level LOW / HIGH / high-impedance.

Receiver

	Inputs		Outputs			
RxIn±	RxCLKIn±	/PwrDn ⁽³⁾	RxOut	RxCLKOut		
Active	Active	HIGH	LOW / HIGH	LOW / HIGH		
Active	Failsafe Condition ⁽⁴⁾	HIGH	Last Valid State	HIGH		
Failsafe Condition ⁽⁴⁾	Active	HIGH	HIGH	LOW / HIGH		
Failsafe Condition ⁽⁴⁾	Failsafe Condition ⁽⁴⁾	HIGH	Last Valid State ⁽⁵⁾	HIGH		
Don't Care	Don't Care	LOW	LOW	HIGH		

Notes:

- 3. The outputs of the transmitter or receiver remain in a high-impedance state until V_{CC} reaches 2V.
- 4. Failsafe condition is defined as the input being terminated and un-driven, shorted, or open.
- 5. If RxCLKIn± is removed prior to the RxIn± date being removed, RxOut is the last valid state. If RxIn± data is removed prior to RxCLKIn± being removed, RxOut is HIGH.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	ameter	Min.	Max.	Unit
V _{CC}	Power Supply Voltage		-0.3	+4.6	V
V_{TTL}	TTL/CMOS Input/Output Vo	Itage	-0.5	+4.6	V
V_{LVDS}	LVDS Input/Output Voltage		-0.3	+4.6	V
I _{OSD}	LVDS Output Short-Circuit (Current		Continuous	
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature, Soldering 4 seconds			+150	°C
T_L	Lead Temperature			+260	°C
	Human Body Model, JESD22-A114	LVDS I/O to Ground		10.0	kV
ESD	(1.5kΩ, 100pF)	All Pins (FIN1215, FIN1217)		6.5	K V
	Machine Model, JESD22-A115, 0Ω, 200pF	FIN1215, FIN1217 Only		>400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature	-40	+85	°C
V_{CCNPP}	Maximum Supply Noise Voltage ⁽⁶⁾		100	mV_{PP}

Note:

 100mV V_{CC} noise should be tested for frequency at least up to 2MHz. All the specifications should be met under such a noise level.

Transmitter DC Electrical Characteristics

Typical values are at $T_A=25^{\circ}$ C and with $V_{CC}=3.3V$; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Units
Transmitter	LVTTL Input Characteristics			I.	I.	I.	I.
V _{IH}	Input High Voltage			2.0		Vcc	V
V_{IL}	Input Low Voltage			GND		0.8	V
V_{IK}	Input Clamp Voltage	I _{IK} =-18mA			-0.79	-1.50	V
	Input Current	V _{IN} =0.4V to 4.6	SV		1.8	10.0	
I _{IN}	input Current	V _{IN} =GND		-10.0	0		μΑ
Transmitter	LVDS Output Characteristics ⁽⁷⁾						
V _{OD}	Output Differential Voltage		250		450	mV	
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	D 4000 F			35	mV	
Vos	Offset Voltage	$R_L=100\Omega$, Figu	ire 4	1.125	1.250	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25		mV
los	Short-Circuit Output Current	V _{OUT} =0V			-3.5	-5.0	mA
l _{OZ}	Disabled Output Leakage Current	D _O =0V to 4.6V /PwrDn=0V	,		±1.0	±10.0	μА
Transmitter	Supply Current						
			33MHz		28.0	46.2	
	21:3 Transmitter Power Supply Current	R _L =100Ω,	40MHz		29.0	51.7	^
I _{CCWT}	21:3 Transmitter Power Supply Current for Worst-Case Pattern with Load ^(8, 9)	Figure 7	65MHz		34.0	57.2	mA
			85MHz ⁽¹⁰⁾		39.0	62.7	
ICCPDT	Powered-Down Supply Current	/PwrDn=0.8V			10.0	55.0	μΑ

Notes:

- Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}).
- 8. The power supply current for both transmitter and receiver can be different with the number of active I/O channels.
- 9. The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.
- 10. FIN1217 only.

Transmitter AC Electrical Characteristics

Typical values are at over supply voltages and operating temperatures ranges, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{TCP}	Transmit Clock Period		11.76	Т	50.00	ns
t _{TCH}	Transmit Clock (TxCLKIn) HIGH Time	Figure 10	0.35	0.50	0.65	Т
t _{TCL}	Transmit Clock LOW Time		0.35	0.50	0.65	Т
t _{CLKT}	TxCLKIn Transition Time (Rising and Falling)	10% to 90% Figure 11	1.0		6.0	ns
t _{JIT}	TxCLKIn Cycle-to-Cycle Jitter				3.0	ns
t_{XIT}	TxIn Transition Time		1.5		6.0	ns
LVDS Tra	ansmitter Timing Characteristics					
t _{TLH}	Differential Output Rise Time (20% to 80%)			0.75	1.50	ns
t _{THL}	Differential Output Fall Time (80% to 20%)	Figure 8		0.75	1.50	ns
t _{STC}	TxIn Setup to TxCLNIn	Figure 10	2.5			ns
t _{HTC}	TxIn Holds to TCLKIn	f=85MHz FIN1217 only	0			ns
t _{TPDD}	Transmitter Power-Down Delay	Figure 17 ⁽¹¹⁾			100	ns
t _{TCCD}	Transmitter Clock Input to Clock Output Delay	Figure 13 T _A =25°C, V _{CC} =3.3V	2.8	5.5	6.8	ns
Transmit	ter Output Data Jitter (f=40 MHz) ⁽¹²⁾					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.25	0	0.25	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1		a-0.25	а	a+0.25	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	Figure 20	2a-0.25	2a	2a+0.25	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	-	3a-0.25	3a	3a+0.25	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4	$f \times 7$	4a-0.25	4a	4a+0.25	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5	10% to 90% Figure 11 Figure 8 Figure 10 f=85MHz FIN1217 only Figure 13 $T_A=25^{\circ}C$, $V_{CC}=3.3V$ Figure 20 $a=\frac{1}{f\times 7}$ Figure 20 $a=\frac{1}{f\times 7}$ Figure 20 $a=\frac{1}{f\times 7}$	5a-0.25	5a	5a+0.25	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6	10% to 90% Figure 11 0%) Figure 8 Figure 10 f=85MHz FIN1217 only Figure 13 $T_A=25^{\circ}C$, $V_{CC}=3.3V$ 10 11 12 Figure 20 13 14 15 16 Figure 20 11 12 Figure 20 13 14 15 16 Figure 20 17 17 18 19 19 10 11 11 11 12 11 13 14 15 16	6a-0.25	6a	6a+0.25	ns
Transmitt	er Output Data Jitter (f=65 MHz) ⁽¹²⁾					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1		a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	Figure 20	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	_	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4	Figure 17 ⁽¹¹⁾ Figure 13 $T_A=25^{\circ}C$, $V_{CC}=3.3V$ Figure 20 $a = \frac{1}{f \times 7}$ Figure 20 $a = \frac{1}{f \times 7}$ Figure 20 $a = \frac{1}{f \times 7}$	4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns

Continued on following page...

Transmitter AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Transmitte	r Output Data Jitter (f=85 MHz, FIN1217 only)) ⁽¹²⁾				
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1		a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	Figure 20	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	$a = \frac{1}{f \times 7}$	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4	f × 7	4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
		f=40MHz		350	370	
t _{JCC}	Transmitter Clock Out Jitter, Cycle-to cycle	f=65MHz		210	0.2 a+0.2 2a+0.2 3a+0.2 4a+0.2 5a+0.2 6a+0.2	ps
300	Figure 23	f=85MHz FIN1217 only		110		
t _{TPLLS}	Transmitter Phase Lock Loop Set Time ⁽¹³⁾	Figure 15 ⁽¹²⁾			10.0	ms

Notes:

- 11. Outputs of all transmitters stay in 3-STATE until power reaches 2V. Clock and data output begins to toggle 10ms after V_{CC} reaches 3V and /PwrDn pin is above 1.5V.
- 12. This output data pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference (see Figure 19). Figure 20 shows the skew between the first data bit and clock output. A two-bit cycle delay is guaranteed when the MSB is output from transmitter.
- 13. This jitter specification is based on the assumption that PLL has a reference clock with cycle-to-cycle input jitter of less than 2ns.

Receiver DC Electrical Characteristics

Typical values are at $T_A=25^{\circ}C$ and with $V_{CC}=3.3V$. Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}). Minimum and maximum values are at over supply voltage and operating temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
LVTTL/CN	MOS DC Characteristics						
V _{IH}	Input High Voltage			2.0		V _{CC}	V
V _{IL}	Input Low Voltage			GND		0.8	V
V _{OH}	Output High Voltage	I _{OH} =-0.4mA		2.7	3.3		V
V _{OL}	Output Low Voltage	I _{OL} =2mA				0.3	V
V_{IK}	Input Clamp Voltage	I _{IK} =-18mA				-1.5	V
I _{IN}	Input Current	V _{IN} =0V to 4.6V		-10		10	μА
I _{OFF}	Input/Output Power-Off Leakage Current	V _{CC} =0V, All LVTTL Inpu 0V to 4.6V	ts/Outputs			±10	μΑ
los	Output Short-Circuit Current	V _{OUT} =0V			-60	-120	μА
Receiver I	LVDS Input Characteristics						
V_{TH}	Differential Input Threshold HIGH	Figure 6, Table 2				100	mV
V_{TL}	Differential Input Threshold LOW	Figure 6, Table 2		-100			mV
V_{ICM}	Input Common Mode Range	Figure 6, Table 2		0.05		2.35	V
	In and Ourse at	V _{IN} =2.4V, V _{CC} =3.6V or 0	V			±10.0	
I _{IN}	Input Current	V _{IN} =0V, V _{CC} =3.6V or 0V				±10.0	μΑ
Receiver	Supply Current						
		33	3MHz			66	
	3:21 Receiver Power Supply	40	0MHz		56	74	A
I _{CCWR}	Current for Worst Case Pattern with Load ⁽¹⁴⁾	C _L =8pF, Figure 7	5MHz		75	102	mA
		85MHz ⁽¹⁵⁾		1	92	125	7
I _{CCPDR}	Powered Down Supply Current	/PwrDn=0.8V (RxOut sta	ays LOW)		NA	400	μΑ

Notes:

- 14. The power supply current for the receiver can be different due to the number of active I/O channels.
- 15. 85MHz specification for FIN1218 only.

Receiver AC Electrical Characteristics

Values are at over supply voltages and operating temperatures, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{RCOL}	RxCLKOut LOW Time		10.0	11.0		ns
t _{RCOH}	RxCLKOut HIGH Time Figure 12		10.0	12.2		ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	Rising Edge Strobe f=40MHz	6.5	11.6		ns
t _{RHRC}	RxOut Valid After RxCLKOut		6.0	11.6		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		15.0	Т	50.0	ns
t _{RCOL}	RxCLKOut LOW Time	Figure 12	5.0	7.8	9.0	ns
t _{RCOH}	RxCLKOut HIGH Time	Rising Edge Strobe f=65MHz	5.0	7.3	9.0	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	1-031/11/12	4.5	7.7		ns
t _{RHRC}	RxOut Valid After RxCLKOut		4.0	8.4		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		11.76	Т	50.00	ns
t _{RCOL}	RxCLKOut LOW Time	Figure 12 Rising Edge Strobe	4.0	6.3	6.0	ns
t _{RCOH}	RxCLKOut HIGH Time	f=85MHz FIN1218 only	4.5	5.4	6.5	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut		3.5	6.3		ns
t _{RHRC}	RxOut Valid After RxCLKOut		3.5	6.5		ns
t _{ROLH}	Output Rise Time (20% to 80%)	C On F Figure 0		2.2	5.0	ns
t _{ROHL}	Output Fall Time (80% to 20%)	C _L =8pF, Figure 9		2.1	5.0	ns
t _{RCCD}	Receiver Clock Input to Clock Output Delay	T _A =25°C, V _{CC} =3.3V Figure 14 ^{(Error!} Reference source not found.)	3.5	6.9	7.5	ns
t _{RPDD}	Receiver Power-Down Delay	Figure 18			1.0	ms
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		1.00		2.15	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1		4.5		5.8	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		8.10		9.15	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	Figure 21 f=40MHz	11.6		12.6	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		15.1		16.3	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		18.8		19.9	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		22.5		23.6	ns

Continued on following page...

Receiver AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.7		1.4	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	Figure 21 f=65MHz	2.9		3.6	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		5.1		5.8	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3		7.3		8.0	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		9.5		10.2	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		11.7		12.4	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		13.9		14.6	ns
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.49		1.19	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	Figure 21 f=85MHz FIN1218 only	2.17		2.87	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		3.85		4.55	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3		5.53		6.23	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		7.21		7.91	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		8.89		9.59	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		10.57		11.27	ns
		f=40MHz, Figure 22	490			ps
	RxIn Skew Margin ^(Error! Reference source not found.)	f=65MHz, Figure 22	400			
t _{RSKM}		f=85MHz FIN1218 only Figure 22	252			
t _{RPLLS}	Receiver Phase Lock Loop Set Time	Figure 16			10.0	ms

- 16. Total channel latency from serializer to deserializer is (T + t_{TCCD}) + (2•T + t_{RCCD}).
 17. Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.

Test Circuits

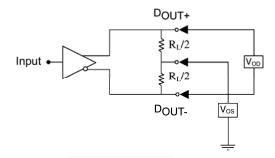
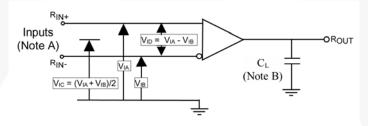



Figure 5. Differential LVDS Output DC Test Circuit

Notes: For all input pulses, t_R or t_F<=1ns.

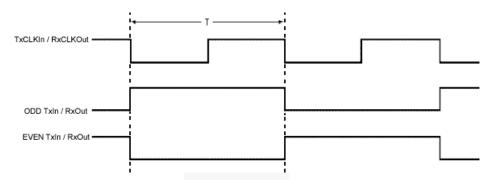

C_L includes all probe and jig capacitance.

Figure 6. Differential Receiver Voltage Definitions, Propagation Delay, and Transition Time Test Circuit

Table 2. Receiver Minimum and Maximum Input Threshold Test Voltages

Applied Voltages (V)		Resulting Differential Input Voltage (mV)	Resulting Common Mode Input Voltage (V)	
V _{IA}	V _{IB}	V _{ID}	V _{IC}	
1.25	1.15	100	1.20	
1.15	1.25	-100	1.20	
2.40	2.30	100	2.35	
2.30	2.40	-100	2.35	
0.10	0	100	0.05	
0	0.10	-100	0.05	
1.50	0.90	600	1.20	
0.90	1.50	-600	1.20	
2.40	1.80	600	2.10	
1.80	2.40	-600	2.10	
0.60	0	600	0.30	
0	0.60	-600	0.30	

AC Loadings and Waveforms

Note: The worst-case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVTTL/CMOS I/O. Depending on the valid strobe edge of transmitter, the TxCLKIn can be either rising or failing edge data strobe.

Figure 7. Worst-Case Test Pattern

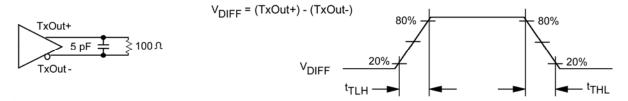


Figure 8. Transmitter LVDS Output Load and Transition Times

Figure 9. Receiver LVTTL/CMOS Output Load and Transition Times

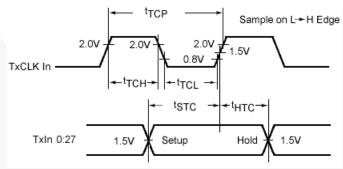


Figure 10. Transmitter Set-up/Hold and HIGH/LOW Times (Rising Edge Strobe)

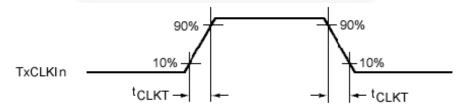


Figure 11. Transmitter Input Clock Transition Time

AC Loadings and Waveforms (Continued)

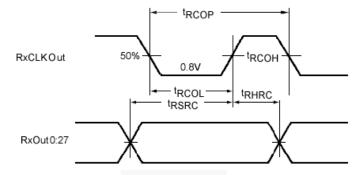


Figure 12. Receiver Set-up/Hold and HIGH/LOW Times

Figure 13. Transmitter Clock-In to Clock-Out Delay (Rising Edge Strobe)

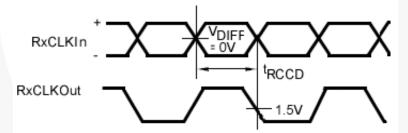


Figure 14. Receiver Clock-In to Clock-Out Delay (Rising Edge Strobe)

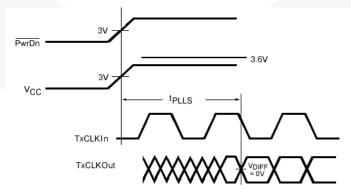


Figure 15. Transmitter Phase-Lock-Loop Set Time

AC Loadings and Waveforms (Continued)

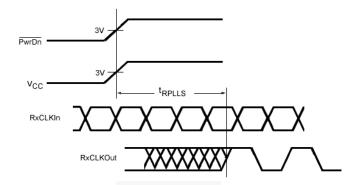


Figure 16. Receiver Phase Lock Loop Set Time

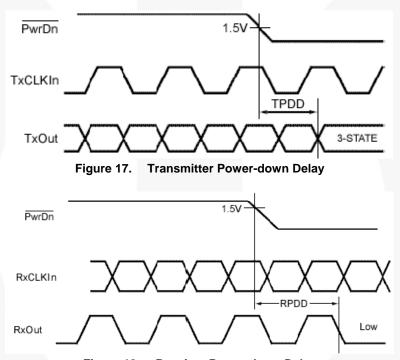
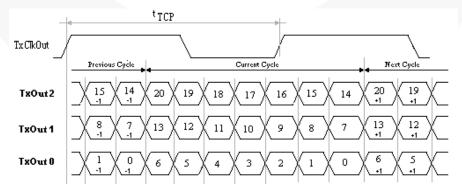



Figure 18. Receiver Power-down Delay

Note: This output date pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference. Two-bit cycle delay is guaranteed with the MSB is output from transmitter.

Figure 19. Parallel LVTTL Inputs Mapped to Three Serial LVDS Outputs

AC Loadings and Waveforms (Continued)]

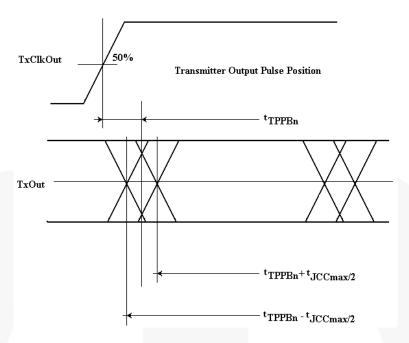


Figure 20. Transmitter Output Pulse Bit Position

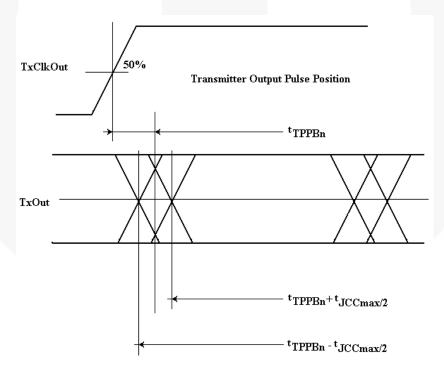
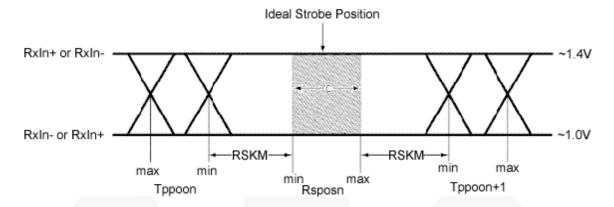
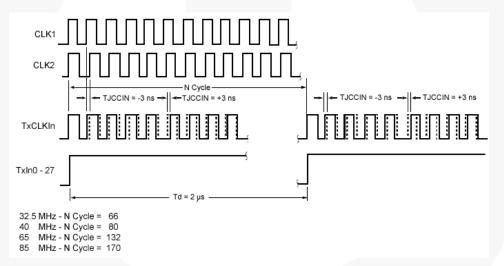



Figure 21. Receiver Strobe Bit Position


AC Loadings and Waveforms (Continued)

Note: t_{RSKM} is the budget for the cable skew and source clock skew plus Inter-Symbol Interference (ISI).

The minimum and maximum pulse position values are based on the bit position of each of the seven bits within the LVDS data stream across PVT (Process, Voltage Supply, and Temperature).

Figure 22. Receiver LVDS Input Skew Margin

Note: This jitter pattern is used to test the jitter response (clock out) of the device over the power supply range with worst jitter ±ns (cycle-to-cycle) clock input. The specific test methodology is as follows:

- Switching input data TxIn0 to TxIn20 at 0.5MHz and the input clock is shifted to left -3ns and to the right +3ns when data is HIGH (by switching between CLK1 and CLK2 in Figure 11).
- The ±3ns cycle-to-cycle input jitter is the static phase error between the two clock sources. Jumping between two clock sources to simulate the worst-case of clock edge jump (3ns) from graphical controllers. Cycle-to-cycle jitter at TxCLK out pin should be measured cross V_{CC} range with 100mV noise (V_{CC} noise frequency <2MHz).

Figure 23. Jitter Pattern

Physical Dimensions

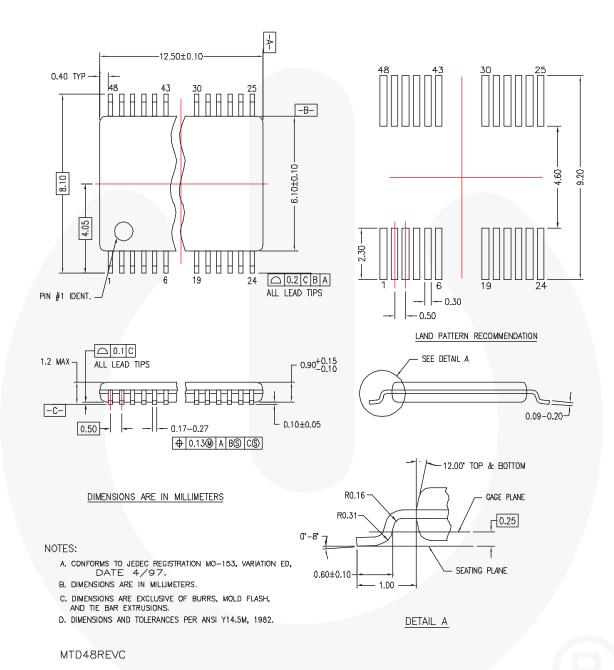


Figure 24. 48-Lead Thin Shrink Small Outline Package (TSSOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Nowr™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™

Current Transfer Logic¹ EcoSPARK[®] EfficientMax™ EZSWITCH™*

E4 DEUXPEED™ F® Fairchild® Fairchild®

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST®

FAST® FastvCore™ FETBench™ FlashVVriter®* FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green FPSTM Green FPSTM e-SeriesTM

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLERTM
MicroFETTM
MicroPakTM
MillerDriveTM
MotionMaxTM
Motion-SPMTM
OPTOLOGIC®
OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Этм

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMaxTM
SMART STARTTM
SPM®
STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6
SuperSOTTM-8

SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM **
GENERAL
The Power Franchise*

Parachiss
TinyBoost™
TinyBoost™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™

TinyPWMTM
TinyWireTM
TriFault DetectTM
TRUECURRENTTM*
uSerDesTM

VisualMax™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS, THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 143

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LVDS Interface IC category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FIN224ACMLX 8T49N2083NLGI# MAX9135GHJ+ MS1224 SN65LVP16DRFT SN65MLVD200D MAX9176EUB+
DS90LV047ATMX/NOPB DS90LV018ATM DS90LT012AHMF DS90LV049TMT DS90LV047ATM DS90LV032ATMTC
DS90C383MTDX/NOPB DS90C383MTD DS90LV031ATMTC DS90C402M SN65LVDS051PWRQ1 DS90C387VJDXNOPB
SN65LVDT32BDR ADN4667ARUZ-REEL7 ADN4665ARUZ ADN4666ARUZ ADN4666ARZ-REEL7 ADN4692EBRZ ADN4693EBRZ
ADN4697EBRZ ADN4695EBRZ ADN4692EBRZ-RL7 ADN4665ARZ ADN4666ARZ ADN4667ARZ ADN4667ARZ-REEL7
ADN4668ARZ ADN4670BSTZ ADN4670BCPZ ADN4661BRZ ADN4663BRZ-REEL7 ADN4694EBRZ-RL7 ADN4662BRZ-REEL7
ADN4662BRZ ADN4691EBRZ ADN4694EBRZ ADN4690EBRZ ADN4661BRZ-REEL7 ADN4696EBRZ-RL7 MAX9113ESA+
GM8285BGA MAX9113ESA+T MAX9111ESA+T