

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Features

Data \＆Control Bits	20
Frequency	10 MHz
Capability	QVGA
Interface	Microcontroller／RGB
μ Controller Usage	\＆m68
Selectable Edge Rates	Yes
Dynamic Current	$9 \mathrm{~mA} / \mathrm{Pair}$
Standby Current	$10 \mu \mathrm{~A}$
Core Voltage（VDA／S）	2.5 to 3．0V
I／O Voltage（VDDP）	1.6 V to VDDA／
ESD	15 KV （IEC）
Package	MLP－32（5 x 5mm）
Ordering Information	FIN424CMLX

Description

The FIN424C and FIN425C μ SerDes $^{\text {TM }}$ are a low－power serializer／deserializer pair that can help minimize the cost and power of an LCD interface．They are designed to operate transparently between the baseband processor and LCD．／WE and chip－select timing is maintained from the serializer to the deserializer．Through the use of serialization，the number of signals transferred from one point to another can be significantly reduced．Typical reduction is $5: 1$ ．Through the use of differential signaling， shielding，and EMI filters can also be minimized，further reducing the cost of serialization．Differential signaling is important for providing a noise－insensitive signal that can withstand radio and electrical noise sources．Major reduction in power consumption allows minimal impact on battery life in mobile applications．

Related Resources

For more information，please visit：
http：／／www．fairchildsemi．com／products／interface／userdes．html

Typical Application

Figure 1．Mobile Phone Example

FIN424C Serializer Pin Descriptions

Pin Name	Description		
STRB	LVCMOS Strobe Signal for Latching Data into the Serializer (On Rising Edge)		
DP[19:0]	LVCMOS Data Input	0	Serializer Low Power
IRES	Low-Power Mode	1	Serializer Enabled
ISTBY	SerDes Standby	0	Serializer and Deserializer in Low Power
Test	Internal Use (Should be GND)	Serializer and Deserializer Enabled	
DS+, DS-	Serial Data Output		
CKS+, CKS-	Serial Clock Output		
VDDP	Power Supply for Parallel I/O and Internal Circuitry		
VDDS	Power Supply for Serial I/O		
VDDA	Power Supply for Core		
GND	Ground Pins		

Notes:

1. $0=\mathrm{V}_{\mathrm{IL}} ; 1=\mathrm{V}_{\mathrm{IH}}$.
2. All GND and VDDP pins must be connected to ground and VDDP, respectively.

Figure 2. FIN424CMLX MLP-32 Pinout (Top Through View)

FIN425C Deserializer Pin Descriptions

Pin Name	Description		
WCLK	LVCMOS STRB Output		
DP[19:0]	LVCMOS Data Output	0	Deserializer Low Power
IRES	Low-Power Mode	1	Deserializer Enabled
SLEW	Parallel Output Edge Rate Control	0	Slow Output Edge Rates
Test	Internal Use (Should be GND)		
DS+, DS-	Serial Data Input		
CKS+, CKS-	Serial Clock Input		
VDDP	Power Supply for Parallel I/O and internal circuitry		
VDDS	Power Supply for Serial I/O		
VDDA	Power Supply for Core		
GND	Ground Pins		

Notes:
3. $0=\mathrm{V}_{\mathrm{IL}} ; 1=\mathrm{V}_{\mathrm{IH}}$.
4. All GND and VDDP pins must be connected to ground and VDDP, respectively.

Figure 3. FIN425CMLX MLP-32 Pinout (Top Through View)

Table 1. Reset and Standby Modes / States

IRES FIN424C FIN425C	ISTBY FIN424C	Mode		Pins	FIN424C Parallel Input State
0			FIN425C Parallel Output State		
	X	Reset Mode	DP[19:0]	Disabled	LOW
			STRB $/$ WCLK	Disabled	HIGH
1	Standby Mode	DP[19:0]	Disabled	LAST STATE	
			STRB $/$ WCLK	Disabled	HIGH
1	Operating Mode	DP[19:0]	Enabled	ENABLED	
			STRB $/$ WCLK	Enabled	ENABLED

Application Diagram

Figure 4. Dual-Display, 16-Bit, μ Controller Interface

Figure 5. Single-Display, 18-Bit, μ Controller Interface

Figure 6. Single-Display, 18-Bit, RGB Interface

Additional Application Information

Flex Cabling: The serial I/O information is transmitted at a high serial rate. Care must be taken implementing this serial I/O flex cable. The following best practices should be used when developing the flex cabling or Flex PCB.

- Keep all four differential serial wires the same length.
- Do not allow noisy signals over or near differential serial wires. Example: No CMOS traces over differential serial wires.
- Use a design goal of 70 to 130Ω differential characteristic impedance.
- Do not place test points on differential serial wires.
- Design differential serial wires a minimum of 2cm away from the antenna.
- Visit Fairchild's website at http://www.fairchildsemi.com/products/interface/userdes.html, contact your sales representative, or contact Fairchild directly at interface@fairchildsemi.com for applications notes or flex guidelines.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{D D}$	Supply Voltage		-0.5	+3.6	V
V_{10}	All Input / Output Voltage		-0.5	$\mathrm{V}_{\text {DDP }}+0.5$	V
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, Four Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000 Board Level			15.0	kV
	Human Body Model, JESD22-A114	All Pins		7.5	
		Serial I/O, /RES, PAR/SPI to GND		14.0	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDS}}{ }^{(5)}$	Supply Voltage	2.5	3.0	V
$\mathrm{~V}_{\mathrm{DDP}}$	Supply Voltage	1.6	$\mathrm{~V}_{\mathrm{DDA} / \mathrm{S}}$	V
T_{A}	Operating Temperature	-30	+85	${ }^{\circ} \mathrm{C}$

Notes:

5. $V_{D D A}$ and $V_{D D S}$ supplies must be hardwired together to the same power supply. $V_{\text {DDP }}$ must be less than or equal to $V_{D D A} / V_{D D S}$.
6. Typical values are tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and 2.75 V .

Electrical Specifications

Values valid for over-supply voltage and operating temperature ranges unless otherwise specified.

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
DC Parallel I/O and Serial Characteristics						
V_{1+}	Input High Voltage		$0.7 \times \mathrm{V}_{\text {DDP }}$		$V_{\text {DDP }}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		GND		$0.3 \times \mathrm{V}_{\text {DDP }}$	V
Vor	Output High Voltage	SLEW $=0$ I ${ }_{\text {OH }}=-250 \mu \mathrm{~A}$	$0.8 \times \mathrm{V}_{\text {DDP }}$			V
		SLEW=1 Іон $^{\text {= }}$ - 1 mA				
Vob	Output Low Voltage	SLEW $=0 \mathrm{lol}_{\text {L }}=250 \mu \mathrm{~A}$			$0.2 \times \mathrm{V}_{\text {DDP }}$	V
		SLEW=1 $\mathrm{loL}=1 \mathrm{~mA}$				
1 N	Input Current		-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {GO }}$	Serial Input Voltage Ground Offset	FIN425C to FIN424C		0		V
Z	Serial Transmission Line Impedance		70	100	130	Ω

Power Characteristics

IDYN_FIN424C	Dynamic Current FIN424C	$\begin{aligned} & \mathrm{V}_{\mathrm{DDA} / \mathrm{S}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=1.8 \mathrm{~V}, \\ & / \mathrm{STBY}=1, / \mathrm{RES}=1 \end{aligned}$	5.44 MHz	4		mA
IDYN_FIN425C	Dynamic Current FIN425C	$\begin{aligned} & V_{\mathrm{DDA} / \mathrm{S}}=2.75 \mathrm{~V} \mathrm{~V}_{\mathrm{DDP}}=1.8 \mathrm{~V}, \\ & / \mathrm{STBY}=1, / \mathrm{RES}=1, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	5.44 MHz	5		mA
$\mathrm{I}_{\text {BRST_FIN424C }}$	Burst Standby Current FIN424C	$\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=1.8 \mathrm{~V}, / \mathrm{STBY}=1, \\ & \text { /RST }=1, \text { No STROBE Signal, } \end{aligned}$		1.3		mA
IBRST_FIN425C	Burst Standby Current FIN425C	$V_{\text {DDA/S }}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=1.8 \mathrm{~V}$, /STBY $=1$, /RST=1, No STROBE Signal, $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		1.8		mA
Istby	Standby Current	FIN424C / FIN425C $V_{\text {DDS/A }}=V_{D D P}=3.0 \mathrm{~V}$, /STBY=0, /RST=1			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ReS }}$	Reset Current	$\begin{aligned} & \text { FIN424C / FIN425C } V_{\text {DDS/A }}=V_{\text {DDP }}=3.0 \mathrm{~V} \text {, } \\ & \text { /RST }=0 \end{aligned}$			10	$\mu \mathrm{A}$

AC FIN424C Specifications

$f_{\text {WSTRB0 }}$	Strobe Frequency		0		10	MHz
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Input Edge Rates			40	ns	
$\mathrm{t}_{\mathrm{S} 1}$	DP Setup Time	DP Before STRBn $\uparrow^{(7)}$	5			ns
$\mathrm{t}_{\mathrm{H} 1}$	DP Hold Time	DP After STRBn $\uparrow^{(7)}$	15			ns

AC FIN425C Specifications

$\mathrm{t}_{\mathrm{R} 0}, \mathrm{t}_{\mathrm{F}} \mathrm{O}$	Output Edge Rates of WCLK	SLEW $=0, \mathrm{CL}=5 \mathrm{pF} 20 \%$ to $80 \%{ }^{(7)}$	8		17	ns
		SLEW $=1, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} 20 \%$ to $80 \%{ }^{(7)}$			10	
$\mathrm{t}_{\mathrm{R} 1}, \mathrm{t}_{\mathrm{F} 1}$	Output Edge Rates of DP[19:0]	SLEW $=0, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} 20 \%$ to $80 \%{ }^{(7)}$	8		22	ns
		SLEW $=1, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} 20 \%$ to $80 \%{ }^{(7)}$			17	
tcs	DP[19:0] to Falling edge of WCLK $C_{L}=5 p F 20 \%$ to 80%		0	4		
$t_{\text {PWL }}$	WCLK Output Pulse Width Low, Measured 30% to $30 \%{ }^{(7)}$		50	56		ns

AC Oscillator Specifications

fosc	Serial Operating Frequency		240	275	310	MHz
tosc-STBY	Oscillator Stabilization Time After Standby	$V_{\text {DDA }}=\mathrm{V}_{\text {DDS }}=2.75 \mathrm{~V}$ IRES $=1, /$ ISTBY \uparrow Transition	15	30	$\mu \mathrm{~s}$	

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
tosc-res	Oscillator Stabilization Time After Reset	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDS}}=2.75 \mathrm{~V} \\ & \text { /STBY=1, /RES } \uparrow \text { Transition } \end{aligned}$		30	50	$\mu \mathrm{s}$
AC Reset and Standby Timing						
tstrb-Res	/RES after last STRBn \uparrow		0			ns
tstrb-stby	Standby Time After Last Strobe		200			ns
tvdo-skew	Allowed Power up Skew between $V_{D D P}$ and $V_{\text {DDA/ }}$		-		+	ms
tvdo-Res	Minimum Reset Low Time After $V_{D D}$ Stable		20			$\mu \mathrm{s}$
$\mathrm{t}_{\text {RES-Stby }}$	ISTBY Wait Time After /RES \uparrow		20			$\mu \mathrm{s}$

Note:

7. Characterized, but not production tested.

Physical Dimensions

BOTTOM VIEW
NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WHHD-4. THIS PACKAGE IS ALSO FOOTPRINT COMPATIBLE WITH WHHD-5.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
D. LAND PATTERN PER IPC SM-782.
E. WIDTH REDUCED TO AVOID SOLDER BRIDGING.
F. DIMENSIONS ARE NOT INCLUSIVE OF BURRS, MOLD FLASH, OR TIE BAR PROTRUSIONS.
G. DRAWING FILENAME: MKT-MLP32Arev3

Figure 7. 32-Lead, Molded Leadless Package (MLP), QUAD, JEDEC MO-220, Variation WHHD-4, 5mm Square
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
FIN424CMLX	-30 to $+85^{\circ} \mathrm{C}$	Green	32-Lead, Molded Leadless Package (MLP), QUAD, JEDEC MO-220, Variation WHHD-4, 5mm Square	Tape and Reel
FIN425CMLX	-30 to $+85^{\circ} \mathrm{C}$	Green	32-Lead, Molded Leadless Package (MLP), QUAD, JEDEC MO-220, Variation WHHD-4,5mm Square	Tape and Reel

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs green.html.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm
Auto-SPM ${ }^{\text {TM }}$
Build it Now ${ }^{\text {TM }}$
CorePLUSTM
CorePOWERTM
CROSSVOLT ${ }^{\text {Tm }}$
CTL ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$
Ecospark ${ }^{\text {® }}$
EfficientMax ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {TM* }}$
El
DEUXPEED ${ }^{\text {TM }}$
${ }^{-1}$
Fairchild ${ }^{\text {® }}$
Fainchild Semiconductor ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {M }}$
FACT ${ }^{\circ}$
FAST ${ }^{\text {© }}$
FastvCore ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$

PDP SPM ${ }^{\text {TM }}$

Power-SPM ${ }^{\text {TM }}$
PowerTrench
PowerXS ${ }^{\text {TM }}$
Programmable Active Droop™
QFET ${ }^{\text {® }}$
QS'm
Quiet Series ${ }^{\text {TM }}$
RapidConfigure ${ }^{\text {TM }}$
(${ }^{\text {TM }}$
Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$
SignalWMise ${ }^{\text {TM }}$
SmartMax ${ }^{T M}$
SMART STARTTM
SPM ${ }^{\text {® }}$
STEALTH ${ }^{\text {TM }}$
SuperFETTM
SupersOTTM-3
SupersOTTM-
SuperSOTTM-8
SupreMOS ${ }^{\text {Tm }}$
SyncFETTM
Sync-Lock ${ }^{\text {TM }}$

S SYSTEM ${ }^{\text {®* }}$
The Power Franchise ${ }^{\circledR}$
保 wer
TinyBoost ${ }^{T M}$
TinyBuck ${ }^{\text {TM }}$
TinyCalc ${ }^{\text {TM }}$
TinyLogic ${ }^{\text {© }}$
TINYOPTOTM
TinyPowertm
TinyPMM ${ }^{\text {m }}$
Tiny Mirerm
TriFault Detect ${ }^{\text {TM }}$
TRUECURRENTTm*
μ SerDes ${ }^{\text {™ }}$
$\mathrm{UHC}^{\text {SerDes }}$
Ultra FRFETTM
UniFETTM
VCX'm
VisualMax ${ }^{\text {TM }}$
$X S^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTCE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABIUTY, FUNCTON, OR DESIGN. FAIRCHILDDOESNOT ASSUME ANY LIABILITY ARISING OUT OF THE APPUCATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPEGFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'SWORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Ant-Counterfeiting Policy is also stated on our extemal website, whw.fairchildsemi.com, under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by oountry on our neb page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and enoourage our customers to do their part in stopping this practioe by buying direct or from authorized distributors.
PRODUCT STA TUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Serializers \& Deserializers - Serdes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MAX31953AUM DS90UR903QSQE/NOPB DS90UB925QSQ/NOPB SN65HVS881PWPR MAX9208EAI+ HG82C51N
$\underline{M A X 9259 G C B / V}+$ MAX9260GCB/V+ MAX9273GTL+ MAX9257AGTL/V+ MAX9278AGTM + MAX9218ETM + MAX9217ETM + MAX9272AGTM/V+ MAX96711GTJ/V+ MAX96701GTG/V+ MAX96705AGTJ/V+T MAX96700GTJ/V+ MAX31963AUM+ MAX96709GTG/V+ MAX3680EAI+ MAX3681EAG+ MAX3882AETX+ MAX9277GTM/V+ MAX9278AGTM/V+ MAX9277GTM+ MAX9282AGTM/V+ MAX9205EAI+ MAX9206EAI+T MAX9205EAI/V+ MAX9205EAI+T MAX9206EAI+ MAX9206EAI/V+ $\underline{\text { MAX9207EAI }+ \text { MAX9238EUM }+ \text { MAX9275GTN }+ \text { MAX9275GTN/V+T MAX9280AGTN/V }+ \text { MAX9282AGTM }+ \text { MAX9286GTN }+1}$ $\underline{M A X 9288 G T M / V+}$ MAX9291BGTN/V+ MAX9291GTN+ MAX96707GTG+ MAX96711GTJ+ MAX96708GTJ+ MAX96706GTJ/V+ $\underline{\text { MAX96708GTJ/V+ MAX9217ECM/V+ MAX9218ECM+T }}$

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

