

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>


Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, weni four in any manner.

FJE3303 High Voltage Fast-Switching NPN Power Transistor

- High Voltage Capability
- High Switching Speed
- Suitable for Electronic Ballast and Switching Regulator

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

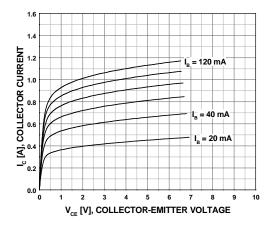
Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	700	V
V _{CEO}	Collector-Emitter Voltage	400	V
V _{EBO}	Emitter-Base Voltage	9	V
I _C	Collector Current (DC)	1.5	A
I _{CP}	Collector Current (Pulse) *	3	А
I _B	Base Current (DC)	0.75	A
I _{BP}	Base Current (Pulse) *	1.5	A
P _C	Collector Dissipation ($T_C = 25^{\circ}C$)	20	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C

* Pulse Test: Pulse Width = 5ms, Duty Cycle $\leq 10\%$

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
BV _{CBO}	Collector-Base Breakdwon Voltage	$I_{\rm C} = 500 \mu {\rm A}, \ I_{\rm E} = 0$	700			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 5 {\rm mA}, I_{\rm B} = 0$	400			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 500 \mu A, I_{C} = 0$	9			V
I _{CBO}	Collector Cut-off Current	V _{CB} = 700V, I _E = 0			10	μA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 9V, I_{C} = 0$			10	μA
h _{FE1} h _{FE2}	DC Current Gain *	$V_{CE} = 2V, I_{C} = 0.5A$ $V_{CE} = 2V, I_{C} = 1.0A$	8 5		21	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$\begin{split} I_{C} &= 0.5A, \ I_{B} = 0.1A \\ I_{C} &= 1.0A, \ I_{B} = 0.25A \\ I_{C} &= 1.5A, \ I_{B} = 0.5A \end{split}$			0.5 1.0 3.0	V V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 0.5A, I_{B} = 0.1A$ $I_{C} = 1.0A, I_{B} = 0.25A$			1.0 1.2	V V
f _T	Current Gain Bandwidth Product	$V_{CE} = 10V, I_{C} = 0.1A$	4			MHz
C _{ob}	Output Capacitance	V _{CB} = 10V, f = 0.1MHz		21		pF
t _{ON}	Turn On Time	V _{CC} = 125V, I _C = 1A			1.1	μs
t _{STG}	Storge Time	$I_{B1} = 0.2A, I_{B2} = -0.2A$ $R_1 = 125\Omega$			4.0	μs
t _F	Fall Time	-12022			0.7	μs

Electrical Characteristics T_C = 25°C unless otherwise noted

* Pulse Test: PW $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$


h_{FE} Classification

	Classification	H1	H2	
Γ	h _{FE1}	8 ~ 16	14 ~ 21	

Typical Performance Characteristics

Figure 1. Static Characteristic

Figure 3. Collector-Emitter Saturation Voltage

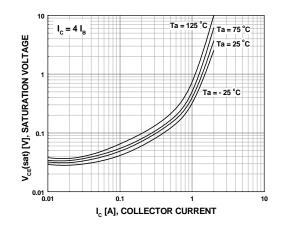
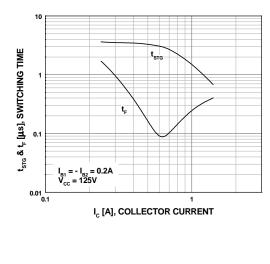
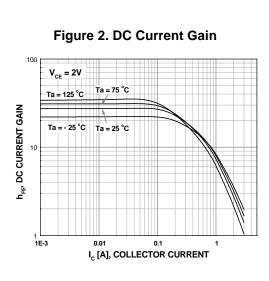




Figure 5. Resistive Load Switching Time

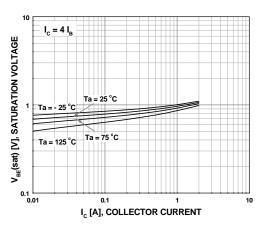
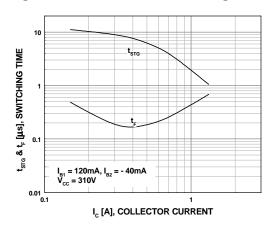
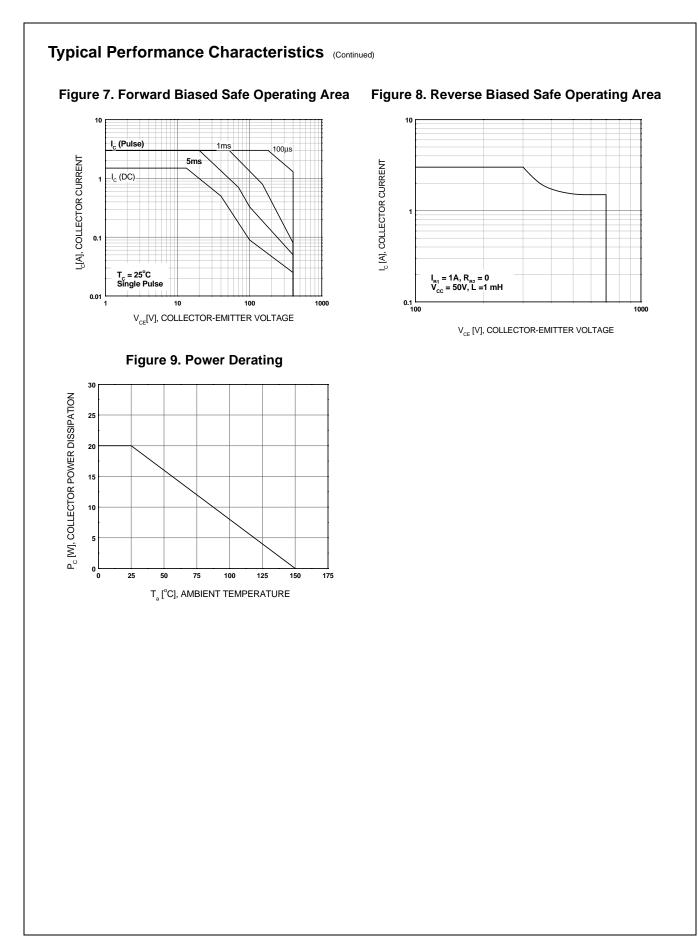
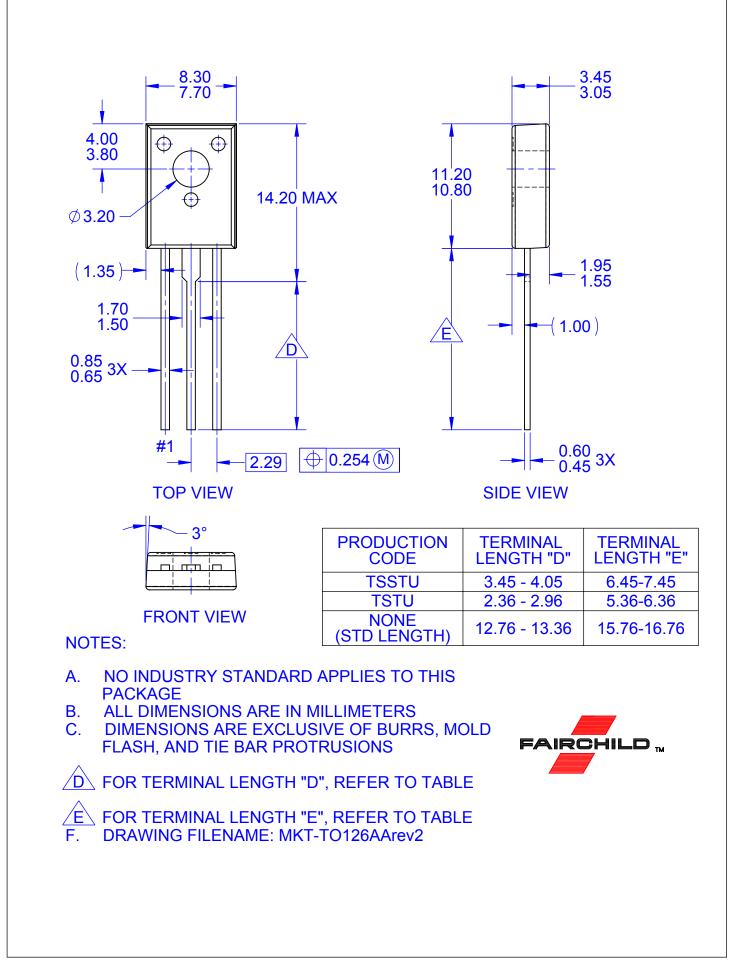





Figure 6. Resistive Load Switching Time

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK