

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Features

■ Guaranteed operating temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

- 2A minimum peak output current

■ High speed response: 200ns max propagation delay over temperature range
■ 250 kHz maximum switching speed

- 30ns typ pulse width distortion

■ Wide V_{CC} operating range: 10 V to 20 V

- $5000 \mathrm{Vrms}, 1$ minute isolation

■ Under voltage lockout protection (UVLO) with hysteresis
■ Minimum creepage distance of 7.0 mm
■ Minimum clearance distance of 7.0 mm
■ C-UL, UL and VDE* approved

- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of 1.5Ω (typ.) offers lower power dissipation

■ $15 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection

Applications

- Plasma Display Panel
- High performance DC/DC convertor
- High performance switch mode power supply

■ High performance uninterruptible power supply

- Isolated Power MOSFET gate drive
*Requires 'V' ordering option

Description

The FOD3180 is a 2A Output Current, High Speed MOSFET Gate Drive Optocoupler. It consists of a aluminium gallium arsenide (AIGaAs) light emitting diode optically coupled to a CMOS detector with PMOS and NMOS output power transistors integrated circuit power stage. It is ideally suited for high frequency driving of power MOSFETs used in Plasma Display Panels (PDPs), motor control inverter applications and high performance DC/DC converters.
The device is packaged in an 8-pin dual in-line housing compatible with $260^{\circ} \mathrm{C}$ reflow processes for lead free solder compliance.

Functional Block Diagram

Note:

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 sec .	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average Input Current ${ }^{(1)}$	25	mA
$\mathrm{I}_{\mathrm{F}(\mathrm{tr}, \mathrm{tf})}$	LED Current Minimum Rate of Rise/Fall	250	ns
$\mathrm{I}_{\mathrm{F} \text { (TRAN) }}$	Peak Transient Input Current (<1	1.0	A
V_{R}	Reverse Input Voltage	5	V
$\mathrm{l}_{\text {OH(PEAK }}$	"High" Peak Output Current ${ }^{(2)}$	2.5	A
$\mathrm{I}_{\text {OL(PEAK) }}$	"Low" Peak Output Current ${ }^{(2)}$	2.5	A
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage	-0.5 to 25	V
$\mathrm{V}_{\text {O(PEAK) }}$	Output Voltage	0 to V_{CC}	V
P_{O}	Output Power Dissipation ${ }^{(4)}$	250	mW
P_{D}	Total Power Dissipation ${ }^{(5)}$	295	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Power Supply	10 to 20	V
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Input Current (ON)	10 to 16	mA
$\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$	Input Voltage (OFF)	-3.0 to 0.8	V

Electrical-Optical Characteristics (DC)

Over recommended operating conditions unless otherwise specified.

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
IOH	High Level Output Current ${ }^{(2)(3)}$	$\mathrm{V}_{\mathrm{OH}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}-1 \mathrm{~V}\right)$	0.5			A
		$\mathrm{V}_{\mathrm{OH}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}-3 \mathrm{~V}\right)$	2.0			
$\mathrm{IOL}_{\text {O }}$	Low Level Output Current ${ }^{(2)(3)}$	$\mathrm{V}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}-1 \mathrm{~V}\right)$	0.5			A
		$\mathrm{V}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}-3 \mathrm{~V}\right)$	2.0			
V_{OH}	High Level Output Voltage ${ }^{(6)(7)}$	$\mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V
V_{OL}	Low Level Output Voltage ${ }^{(6)(7)}$	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$			$\mathrm{V}_{\mathrm{EE}}+0.5$	V
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current	Output Open, $\mathrm{I}_{\mathrm{F}}=10$ to 16 mA		4.8	6.0	mA
$\mathrm{I}_{\text {CCL }}$	Low Level Supply Current	Output Open, $\mathrm{V}_{\mathrm{F}}=-3.0 \text { to } 0.8 \mathrm{~V}$		5.0	6.0	mA
$\mathrm{I}_{\text {FLH }}$	Threshold Input Current Low to High	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$			8.0	mA
$\mathrm{V}_{\mathrm{FHL}}$	Threshold Input Voltage High to Low	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.2	1.43	1.8	V
$\Delta \mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}$	Temperature Coefficient of Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {UVLO+ }}$	UVLO Threshold	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		8.3		V
$\mathrm{V}_{\text {UVLO- }}$		$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		7.7		V
UVLO ${ }_{\text {HYST }}$	UVLO Hysteresis			0.6		V
BV_{R}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		60		pF

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics

Over recommended operating conditions unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit	
$t_{\text {PLH }}$	Propagation Delay Time to High Output Level ${ }^{(8)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{f}=250 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%, \\ & \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF} \end{aligned}$	50	135	200	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time to Low Output Level ${ }^{(8)}$		50	105	200	ns	
$\mathrm{P}_{\text {WD }}$	Pulse Width Distortion ${ }^{(9)}$				65	ns	
$\begin{aligned} & \mathrm{P}_{\mathrm{DD}} \\ & \left(\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right) \end{aligned}$	Propagation Delay Difference Between Any Two Parts ${ }^{(10)}$		-90		90	ns	
t_{r}	Rise Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \\ & \mathrm{R}_{\mathrm{g}}=10 \Omega \end{aligned}$		75		ns	
t_{f}	Fall Time			55		ns	
tuvLO ON	UVLO Turn On Delay			2.0		$\mu \mathrm{s}$	
tuvLo OFF	UVLO Turn Off Delay			0.3		$\mu \mathrm{s}$	
$\\|^{\text {CM }}$ H ${ }^{\text {l }}$	Output High Level Common Mode Transient Immunity ${ }^{(11)(12)}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{f}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V} \end{aligned}$	15			$\mathrm{kV} / \mathrm{\mu s}$	
${ }^{\text {CM }}$ L \|	Output Low Level Common Mode Transient Immunity ${ }^{(11)(13)}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{f}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V} \end{aligned}$	15			$\mathrm{kV} / \mathrm{\mu s}$	

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
$\mathrm{V}_{\mathrm{ISO}}$	Withstand Isolation Voltage ${ }^{(14)(15)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{R} . \mathrm{H} .<50 \%, \mathrm{t}=1$ min., $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 20 \mu \mathrm{~A}$	5000			$\mathrm{~V}_{\mathrm{rms}}$
$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	Resistance (input to output) ${ }^{(15)}$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}$		10^{11}		Ω
$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	Capacitance (input to output)	Freq. $=1 \mathrm{MHz}$		1		pF

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

1. Derate linearly above $+70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. The output currents I_{OH} and I_{OL} are specified with a capacitive current limited load $=(3 \times 0.01 \mu \mathrm{~F})+0.5 \Omega$, frequency $=8 \mathrm{kHz}, 50 \% \mathrm{DF}$.
3. The output currents I_{OH} and I_{OL} are specified with a capacitive current limited load $=(3 \times 0.01 \mu \mathrm{~F})+8.5 \Omega$, frequency $=8 \mathrm{kHz}, 50 \% \mathrm{DF}$.
4. Derate linearly above $+87^{\circ} \mathrm{C}$, free air temperature at the rate of $0.77 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Refer to Figure 12.
5. No derating required across operating temperature range.
6. In this test, V_{OH} is measured with a dc load current of 100 mA . When driving capacitive load V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.
7. Maximum pulse width $=1 \mathrm{~ms}$, maximum duty cycle $=20 \%$.
8. $t_{\text {PHL }}$ propagation delay is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V_{O} signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V_{O} signal.
9. $P W D$ is defined as $I t_{P H L}-t_{\text {PLH }} \mid$ for any given device.
10. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD3180 parts under same test conditions.
11. Pin 1 and 4 need to be connected to LED common.
12. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse V_{CM} to assure that the output will remain in the high state (i.e. $\mathrm{V}_{\mathrm{O}}>10.0 \mathrm{~V}$).
13. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $>6000 \mathrm{Vrms}$, 60 Hz for 1 second (leakage detection current limit $\mathrm{I}_{\mathrm{I}-\mathrm{O}}<5 \mu \mathrm{~A}$).
15. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.

Typical Performance Curves

Fig. 1 Input Forward Current vs. Forward Voltage

Fig. 3 Output Low Voltage vs. Ambient Temperature

Fig. 5 Supply Current vs. Ambient Temperature

Fig. 2 Low To High Input Current Threshold vs. Ambient Temperature

Fig. 4 High Output Voltage Drop vs. Ambient Temperature

Fig. 6 Supply Current vs. Supply Voltage

Typical Performance Curves (Continued)

Fig. 7 Propagation Delay vs. Load Capacitance

Fig. 9 Propagation Delay vs. Series Load Resistance

Fig. 8 Propagation Delay vs. Forward LED Current

Fig. 10 Propagation Delay vs. Ambient Temperature

Fig. 11 Propagation Delay vs. Supply Voltage

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	FOD3180	Standard Through Hole Device
S	FOD3180S	Surface Mount, Lead Bend
SD	FOD3180SD	Surface Mount, Tape and Reel
T	FOD3180T	$0.4 "$ Lead Spacing
V	FOD3180V	VDE 0884
TV	FOD3180TV	VDE 0884, 0.4" Lead Spacing
SV	FOD3180SV	VDE 0884, Surface Mount
SDV	FOD3180SDV	VDE 0884, Surface Mount, Tape and Reel

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	Two digit year code, e.g., '03'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

Carrier Tape Specifications

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P_{2}		4.0 ± 0.1
P	Pocket Pitch	12.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	10.30 ± 0.20
$\mathrm{~B}_{0}$		10.30 ± 0.20
$\mathrm{~K}_{0}$		4.90 ± 0.20
$\mathrm{~W}_{1}$	Cover Tape Width	1.6 ± 0.1
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

- Peak reflow temperature: 260 C (package surface temperature)
- Time of temperature higher than 183C for 160 seconds or less
- One time soldering reflow is recommended

Output Power Derating

The maximum package power dissipation is 295 mW . The package is limited to this level to ensure that under normal operating conditions and over extended temperature range that the semiconductor junction temperatures do not exceed $125^{\circ} \mathrm{C}$. The package power is composed of three elements; the LED, static operating power of the output IC, and the power dissipated in the output power MOSFET transistors. The power rating of the output IC is 250 mW . This power is divided between the static power of the integrated circuit, which is the product of $I_{\text {DD }}$ times the power supply voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{E E}$). The maximum IC static output power is $150 \mathrm{~mW},\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)=25 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}}=$ 6 mA . This maximum condition is valid over the operational temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Under these maximum operating conditions, the output of the power MOSFET is allowed to dissipate 100 mW of power.
The absolute maximum output power dissipation versus ambient temperature is shown in Figure 12. The output driver is capable of supplying 100 mW of output power over the temperature range from $-40^{\circ} \mathrm{C}$ to $87^{\circ} \mathrm{C}$. The output derates to 90 mW at the absolute maximum operating temperature of $100^{\circ} \mathrm{C}$.

Fig. 12 Absolute Maximum Power Dissipation vs. Ambient Temperature

The output power is the product of the average output current squared times the output transistor's $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$:
$\mathrm{P}_{\mathrm{O}(\mathrm{AVG})}=\mathrm{I}_{\mathrm{O}(\mathrm{AVG})}{ }^{2} \cdot \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
The $\mathrm{I}_{\mathrm{O}(\mathrm{AVG})}$ is the product of the duty factor times the peak current flowing in the output. The duty factor is the ratio of the 'on' time of the output load current divided by the period of the operating frequency. An $R_{D S(O N)}$ of 2.0Ω results in an average output load current of 200 mA . The load duty factor is a ratio of the average output time of the power MOSFET load circuit and period of the driving frequency.
The maximum permissible, operating frequency is determined by the load supplied to the output at its resulting output pulse width. Figure 13 shows an example of a $0.03 \mu \mathrm{~F}$ gate to source capacitance with a series resistance of 8.50Ω. This reactive load results in a composite average pulse width of $1.5 \mu \mathrm{~s}$. Under this load condition it is not necessary to derate the absolute maximum output current until the frequency of operation exceeds 63 kHz .

Fig. 13 Output Current Derating vs. Frequency

I_{OH} and I_{OL} Test Conditions

This device is tested and specified when driving a complex reactive load. The load consists of a capacitor in the series with a current limiting resistor. The capacitor represents the gate to source capacitance of a power MOSFET transistor. The test load is a $0.03 \mu \mathrm{~F}$ capacitor in series with an 8.5Ω resistor. The LED test frequency is 10.0 kHz with a 50% duty cycle. The combined I_{OH} and l_{OL} output load current duty factor is 0.6% at the test frequency.

Figure 14 illustrates the relationship of the LED input drive current and the device's output voltage and sourcing and sinking currents. The $0.03 \mu \mathrm{~F}$ capacitor load represents the gate to source capacitance of a very large power MOSFET transistor. A single supply voltage of 20 V is used in the evaluation.

Figure 15 shows the test schematic to evaluate the output voltage and sourcing and sinking capability of the device. The I_{OH} and I_{OL} are measured at the peak of their respective current pulses.

Figure 15. Test Schematic

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CPC1590P TLP705A(F) TLP700A(F) FOD3150 VO3120-X001 ACPL-W343-560E ACPL-W340-560E H11L2S(TA)-V ACNW3410-500E ACPL-P347-500E ACPL-P347-560E ACNT-H343-500E H11L1S(TA) H11L3SR2M HCPL3700SD HCPL-J312-000E TLP155E(TPL,E) TLP2345(E(T TLP2348(E(T TLP350H(F) TLP701AF(F) FOD8333 TLP351H(F) TLP5214(TP,E(O TLP5702(TP,E TLP351H(TP1,F) FOD3120SDV FOD8160 FOD3184TSR2V 6N140A\#300 6N140A/883B HCPL-0466-500E HCPL-6750 TLP700AF(F) TLP152(TPL,E HCPL-5730 OPIA804DTUE 8302401EA H11L1 HCPL-3700 TLP251(F) TLP250(F) VO3150A-X017T TLP5214A(D4-TP,E ACPL-P314000E FOD8333R2 ACNW3190-300E ACPL-32JT-500E ACPL-3130-000E ACPL-331J-500E

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

