Single Channel, DC Sensing **Input, Phototransistor Optocoupler In Stretched Body SOP 4-Pin**

FODM100x Series

Description

The FODM100x Series, single channel, DC sensing input, optocoupler consists of one gallium arsenide (GaAs) infrared light emitting diode optically coupled to one phototransistor, in a stretched body SOP 4-pin package. The input-output isolation voltage, V_{ISO}, is rated at 5,000 VAC_{RMS}.

Features

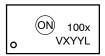
- ≥ 8 mm Creepage and Clearance Distance, and ≥ 0.4 mm Insulation Distance to Achieve Reliable and High Voltage Insulation
- Safety and Regulatory Approvals
- UL1577, 5,000 VAC_{RMS} for 1 min
- DIN EN/IEC60747-5-5, 890 V Peak Working Voltage
- High Breakdown Collector to Emitter Voltage, BV_{CEO} = 70 V Minimum
- Extended Industrial Temperate Range, -40 to 110°C
- Current Transfer Ratio at $I_F = 5$ mA, $V_{CE} = 5$ V, $T_A = 25$ °C
- FODM1007: 80 to 160%
- FODM1008: 130 to 260%
- FODM1009: 200 to 400%
- These are Pb-Free Devices

Applications

- Primarily Suited for DC-DC Converters
- For Ground Loop Isolation, Signal to Noise Isolation
- Communications Adapters, Chargers
- Consumer Appliances, Set-Top Boxes
- Industrial Power Supplies, Motor Control, Programmable Logic Control

Related Resources

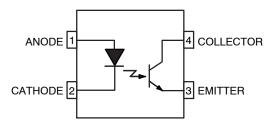
- https://www.onsemi.com/products/optoelectronics/
- www.onsemi.com/datsheets/HM/HMHA2801.pdf


ON Semiconductor®

www.onsemi.com

SSOP4 / LSOP04 CASE 565BH

MARKING DIAGRAM


100x = Specific Device Code (x = 7, 8, 9)= DIN EN/IEC60747-5-5 Option (only

appears on component ordered with

this option)

= Last Digit Year Code = Two Digit Work Week = Assembly Package Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter	Characteristics	
Installation Classifications per DIN VDE	<150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	<300 V _{RMS}	I–III
Climatic Classification	40/110/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1,426	V _{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1,671	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	890	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6.000	V_{peak}
	External Creepage	≥8.0	mm
	External Clearance	≥8.0	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.4	mm
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Value	Unit
TOTAL PA	CKAGE	<u>.</u>	
T _{STG}	Storage Temperature	-55 to +150	°C
T _{OPR}	Operating Temperature	-40 to +110	°C
TJ	Junction Temperature	-40 to +125	°C
EMITTER			
I _{F(avg)}	Continuous Forward Current	50	mA
I _{F(pk)}	Continuous Forward Current (1 μs Pulse, 300 pps)	1	А
V _R	Reverse Input Voltage	6	V
PD _{LED}	LED Power Dissipation @ T _A = 25°C (Note 2)	100	mW
	Derate Above 25°C	0.9	mW/°C
DETECTO	R	<u>.</u>	
I _C	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	70	V
V _{ECO}	Emitter-Collector Voltage	7	V
PD_C	Detector Power Dissipation @ T _A = 25°C (Note 2)	150	mW
	Derate Above 25°C	1.47	mW/°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C unless otherwise specified.

INDIVIDUAL COMPONENT CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit	
EMITTER	EMITTER							
V_{F}	Forward Voltage	All	I _F = 50 mA	_	1.4	1.6	V	
I _R	Reverse Current	All	V _R = 4 V	-	-	10	μΑ	
DETECTOR								
BV _{CEO}	Breakdown Voltage Collector to Emitter	All	I _C = 1 mA, I _F = 0	70	-	_	V	
BV _{ECO}	Emitter to Collector	All	I _E = 0.1 mA, I _F = 0	7	-	-	V	
I _{CEO}	Collector Dark Current	All	V _{CE} = 70 V, I _F = 0	=	-	100	nA	
C _{CE}	Capacitance	All	V _{CE} = 0 V, f = 1 MHz	_	5	-	pF	

DC TRANSFER CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
CTR	DC Current Transfer Ratio	FODM1007	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	80	_	160	%
		FODM1008		130	_	260	
		FODM1009		200	_	400	
V _{CE(SAT)}	Saturation Voltage	All	I _F = 10 mA, I _C = 1 mA	_	_	0.3	V

AC TRANSFER CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
t _r	Rise Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω	İ	5.7	18.0	μs
t _f	Fall Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω	-	8.5	18.0	

ISOLATION CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
V _{ISO}	Steady State Isolation Voltage	All	$T_A = 25^{\circ}C, \text{ R.H.} < 50\%, \\ t = 1.0 \text{ min., } I_{I-O} \le 20 \mu\text{A}$	5,000	-	-	VAC _{RMS}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

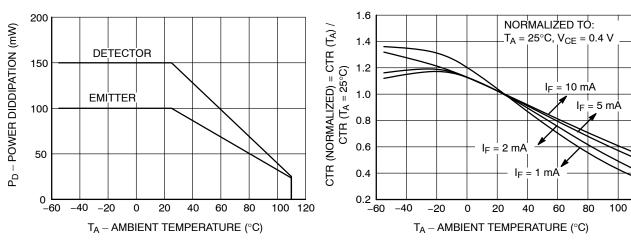


Figure 1. Power Dissipation vs. Ambient Temperature

Figure 2. Saturated Normalized Current Transfer Ratio vs. Ambient temperature

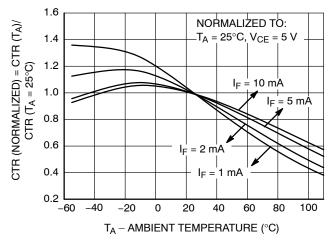


Figure 3. Non-Saturated Normalized Current Transfer Ratio vs. Ambient temperature

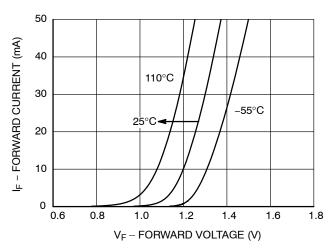


Figure 4. Forward Current vs. Forward Voltage

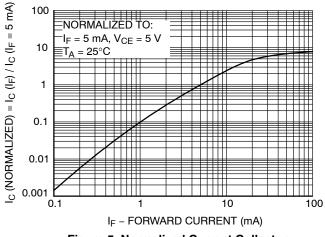


Figure 5. Normalized Current Collector vs. Forward Current

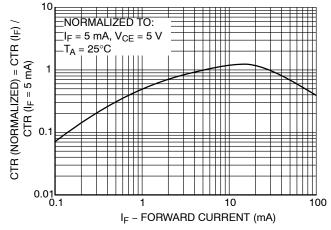


Figure 6. Normalized Current Transfer Ratio vs. Forward Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

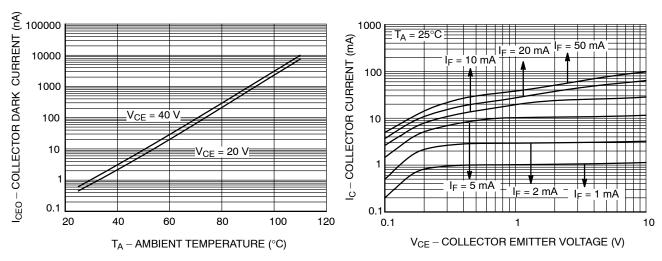


Figure 7. Collector Dark Current vs. Ambient Temperature

Figure 8. Collector Current vs. Collector Emitter Voltage

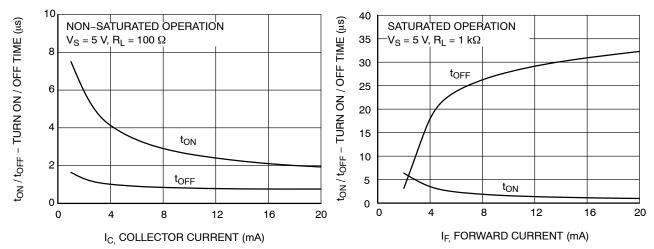


Figure 9. Turn On / Turn Off Time vs. Collector Current

Figure 10. Turn On / Turn Off Time vs. Forward Current

REFLOW PROFILE

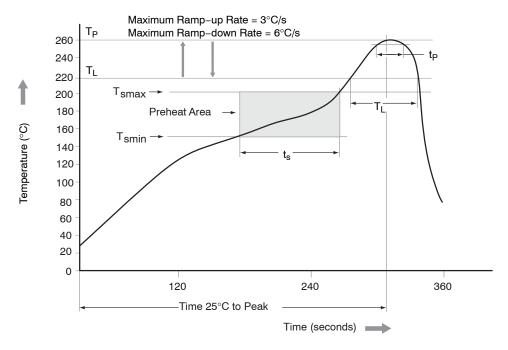
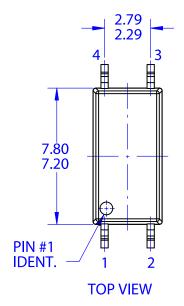


Figure 11. Reflow Profile

Table 1. REFLOW PROFILE

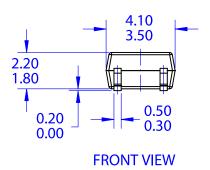
Profile Freature	Pb-Free Assembly Profile
Temperature Minimum (T _{smin})	150°C
Temperature Maximum (T _{smax})	200°C
Time (t _S) from (T _{smin} to T _{smax})	60 – 120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

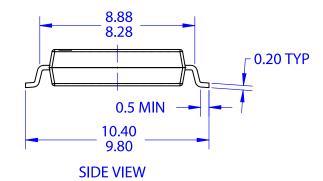
ORDERING INFORMATION


Part Number	Package	Shipping [†]
FODM1007	Stretched Body SOP 4-Pin	100 Units / Tube
FODM1007R2	Stretched Body SOP 4-Pin	3000 / Tape & Reel
FODM1007V	Stretched Body SOP 4–Pin, DIN EN/IEC60747–5–5 Option	100 Units / Tube
FODM1007R2V	Stretched Body SOP 4–Pin, DIN EN/IEC60747–5–5 Option	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: The product orderable part number system listed in this table also applies to the FODM1008, FODM1009 products.


SSOP4 / LSOP04 CASE 565BH ISSUE O


DATE 31 JAN 2017

LAND PATTERN RECOMMENDATION

NOTES:

A. NO INDUSTRY STANDARD APPLIES TO THIS **PACKAGE**

B. ALL DIMENSIONS ARE IN MILLIMETERS

C. DIMENSIONS DO NOT INCLUDE MOLD FLASH **OR BURRS**

DOCUMENT NUMBER:	98AON13754G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SSOP4 / LSOP04		PAGE 1 OF 1		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S SFH615AGR-X007T PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2581L2-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED