Single Channel, AC/DC Sensing Input, Phototransistor Optocoupler In Half-Pitch Mini-Flat 4-Pin Package
 FODM214, FODM217 Series

The FODM217 series consist of a gallium arsenide infrared emitting diode driving a phototransistor. The FODM214 series consist of two gallium arsenide infrared emitting diodes connected in inverse parallel for AC operation. Both were built in a compact, half-pitch, mini-flat, 4 -pin package. The lead pitch is 1.27 mm .

Features

- Current Transfer Ratio Ranges from 20 to 600%
at $\mathrm{I}_{\mathrm{F}}= \pm 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- FODM214-20 to 400%
- FODM214A - 50 to 250%
at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- FODM217A - 80 to 160%
- FODM217B - 130 to 260%
- FODM217C - 200 to 400%
- FODM217D - 300 to 600%
- Safety and Regulatory Approvals:
- UL1577, 3750 VAC RMS for 1 min
- DIN EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- Applicable to Infrared Ray Reflow, $260^{\circ} \mathrm{C}$

Typical Applications

- Primarily Suited for DC-DC Converters
- For Ground Loop Isolation, Signal to Noise Isolation
- Communications - Adapters, Chargers
- Consumer - Appliances, Set Top Boxes
- Industrial - Power Supplies, Motor Control, Programmable Logic Control

MFP4 2.5x4.4, 1.27P CASE 100AL

ORDERING INFORMATION
See detailed ordering and shipping information on page 7 of this data sheet.

FODM214, FODM217 Series

SAFETY AND INSULATIONS RATING

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data.
Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	$<150 \mathrm{~V}_{\text {RMS }}$	I-IV
	$<300 \mathrm{~V}_{\text {RMS }}$	I-III
Climatic Classification	$55 / 110 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
$V_{\text {PR }}$	Input-to-Output Test Voltage, Method A, $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	904	Vpeak
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1060	Vpeak
$V_{\text {IORM }}$	Maximum Working Insulation Voltage	565	Vpeak
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	4,000	Vpeak
	External Creepage	≥ 5	mm
	External Clearance	≥ 5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T_{S}	Case Temperature (Note 1)	150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current (Note 1)	200	mA
$\mathrm{P}_{\text {S, OUTPUT }}$	Output Power (Note 1)	300	mW
R_{10}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$ (Note 1)	$>10^{9}$	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.)

Symbol	Parameter	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature	-55 to +110	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 sec	${ }^{\circ} \mathrm{C}$

EMITTER

$\mathrm{I}_{\text {Faverage })}$	Continuous Forward Current	50	mA
$\mathrm{IF}_{(\text {peak })}$	Peak Forward Current ($1 \mu \mathrm{~s}$ pulse, 300 pps)	1	A
$\mathrm{~V}_{\mathrm{R}}$	Reverse Input Voltage	6	V
$\mathrm{PD}_{\text {LED }}$	Power Dissipation (Note 2)	70	mW

DETECTOR

$\mathrm{I}_{\mathrm{C}(\text { average })}$	Continuous Collector Current	50	mA
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage	80	V
$\mathrm{~V}_{\text {ECO }}$	Emitter-Collector Voltage	7	V
PD_{C}	Collector Power Dissipation (Note 2)	150	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Device	Conditions	Min.	Typ.	Max.	Units
EMITTER							
V_{F}	Forward Voltage	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 20 \mathrm{~mA}$		1.2	1.4	V
		FODM217	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$				
I_{R}	Reverse Current	FODM217	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$			10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {T }}$	Terminal Capacitance	All	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$		30	250	pF

DETECTOR

$\mathrm{BV}_{\text {CEO }}$	Collector-Emitter Breakdown Voltage	All	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{IF}=0 \mathrm{~mA}$	80		
$\mathrm{BV}_{\text {ECO }}$	Emitter-Collector Breakdown Voltage	All	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IF}=0 \mathrm{~mA}$	7		V
$\mathrm{I}_{\text {CEO }}$	Collector Dark Current	All	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{IF}=0 \mathrm{~mA}$		V	

TRANSFER CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Device	Conditions	Min.	Typ.	Max.	Units
CTR $_{\text {CE }}$	Current Transfer Ratio (collector-emitter)	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	20		400	\%
		FODM214A		50		250	
		FODM217A	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	80		160	
		FODM217B		130		260	
		FODM217C		200		400	
		FODM217D		300		600	
I_{C}	Collector Current	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	0.2		2.5	mA
		FODM217	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	4		30	
$\mathrm{CTR}_{(\text {(SAT }}$	Saturated Current Transfer Ratio	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 8 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=0.4 \mathrm{~V}$		60		\%
		FODM217	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}$				
$\mathrm{I}_{\text {(SAT }}$	Collector Current	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}$		4.8		mA
		FODM217	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}$				
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter Saturation Voltage	FODM214	$\mathrm{I}_{\mathrm{F}}= \pm 8 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.4 \mathrm{~mA}$			0.4	V
		FODM217	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.4 \mathrm{~mA}$				

SWITCHING CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	Min.	Typ.	Max.
t_{ON}	Turn On Time	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		3	
$\mathrm{t}_{\mathrm{OFF}}$	Turn Off Time	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mu \mathrm{~s}$		
t_{R}	Output Rise Time (10\%-90\%)	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		3	
t_{F}	Output Fall Time (90\%-10\%)	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		3 s	

ISOLATION CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Typ.	Max.
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	Freq $=60 \mathrm{~Hz}, \mathrm{t}=1.0 \mathrm{~min}$, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 10 \mu \mathrm{~A}($ Note 3,4$)$	3,750		
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\text {I-O }}=500 \mathrm{~V}($ Note 3)	5×10^{10}		
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	Frequency $=1 \mathrm{MHz}$	Ω		

3. Device is considered a two terminal device: Pin 1 and 2 are shorted together and Pins 3 and 4 are shorted together.
4. $3,750 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 minute duration is equivalent to $4,500 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.

Figure 1. Collector Power Dissipation vs. Ambient Temperature

Figure 3. Forward Current vs. Forward Voltage

Figure 5. Collector Emitter Voltage vs. Forward Current

Figure 2. LED Power Dissipation vs. Ambient Temperature

Figure 4. Forward Voltage Temperature Coefficient vs. Forward Current

Figure 6. Collector Current vs. Collector-Emitter Voltage

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V)
Figure 7. Collector Current vs. Small Collector-Emitter Voltage

Figure 9. Collector Dark Current vs. Ambient Temperature

Figure 11. Collector-Emitter Saturation vs. Ambient Temperature

Figure 8. Collector Current vs. Forward Current

Figure 10. Current Transfer Ratio vs. Forward Current

Figure 12. Collector Current vs. Ambient Temperature

Figure 13. Switching Time vs. Load Resistance

Figure 14. Switching Time vs. Ambient Temperature

TEST CIRCUIT

Figure 15. Test Circuit for Switching Time

FODM214, FODM217 Series

REFLOW PROFILE

Figure 16. Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	$60-120$ seconds
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150$ seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (tp) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp-down Rate (T_{P} to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

ORDERING INFORMATION (Note 5)

Part Number	Package	Packing Method
FODM214A	SOP 4-Pin	Tube (100 units)
FODM214AR2	SOP 4-Pin	Tape and Reel (3000 units)
FODM214AV	SOP 4-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 units)
FODM214AR2V	SOP 4-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (3000 units)

5. The product orderable part number system listed in this table also applies to the FODM214, FODM217A, FODM217B, FODM217C, and FODM217D products.

MFP4 2.5x4.4, 1.27P
CASE 100AL
ISSUE O

NOTES:

LAND PATTERN RECOMMENDATION

A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

